The European Physical Journal B

, Volume 73, Issue 3, pp 347–351 | Cite as

Double-stage continuous-discontinuous superconducting phase transition in the Pauli paramagnetic limit of a 3D superconductor: the URu2Si2 case

Solid State and Materials


The sharp suppression of the de-Haas van-Alphen oscillations observed in the mixed superconducting (SC) state of the heavy fermion compound URu2Si2 is shown to confirm a theoretical prediction of a narrow double-stage SC phase transition, smeared by fluctuations, in a 3D paramagnetically-limited superconductor. The predicted scenario of a second order transition to a nonuniform (FFLO) state followed by a first order transition to a uniform SC state, obtained by using a non-perturbative approach, is also found to be consistent with recent thermal conductivity measurements performed on this material.


Fermi Surface Order Phase Transition Vertex Part Heavy Fermion Compound dHvA Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963)CrossRefADSGoogle Scholar
  2. 2.
    K. Maki, T. Tsuneto, Prog. Theor. Phys. 31, 945 (1964)CrossRefADSGoogle Scholar
  3. 3.
    T. Maniv, V. Zhuravlev, Phys. Rev. B 77, 134511 (2008)CrossRefADSGoogle Scholar
  4. 4.
    A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F. Steglich, J.D. Tompson, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 89, 137002 (2002)CrossRefADSGoogle Scholar
  5. 5.
    P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)CrossRefADSGoogle Scholar
  6. 6.
    A.I. Larkin, Yu.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)]Google Scholar
  7. 7.
    H. Shishido et al., [arXiv:cond-mat.str-e:0903.3821]Google Scholar
  8. 8.
    K. Yano, T. Sakakibara, T. Tayama, M. Yokoyama, H. Amitsuka, Y. Homma, P. Miranovic, M. Ichioka, Y. Tsutsumi, K. Machida, Phys. Rev. Lett. 100, 017004 (2008)CrossRefADSGoogle Scholar
  9. 9.
    H. Ohkuni, Y. Inada, Y. Tokiwa, K. Sakurai, R. Settai, T. Honma, Y. Haga, E. Yamamoto, Y. Onuki, H. Yamagami, S. Takahashi, T. Yanagisawa, Phil. Mag. B 79, 1045 (1999)CrossRefADSGoogle Scholar
  10. 10.
    Y. Kasahara et al., Phys. Rev. Lett. 99, 116402 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Y.A. Bychkov, L.P. Gorkov, Sov. Phys. JETP 14, 1132 (1962)Google Scholar
  12. 12.
    D.F. Agterberg, K. Yang, J. Phys.: Condens. Matter 13, 9259 (2001)CrossRefADSGoogle Scholar
  13. 13.
    M. Houzet, A. Buzdin, Phys. Rev. B 63, 184521 (2001)CrossRefADSGoogle Scholar
  14. 14.
    V. Zhuravlev, T. Maniv, I.D. Vagner, P. Wyder, Phys. Rev. B 56, 14693 (1997)CrossRefADSGoogle Scholar
  15. 15.
    T. Maniv, V. Zhuravlev, I.D. Vagner, P. Wyder, Rev. Mod. Phys. 73, 867Google Scholar
  16. 16.
    T. Maniv, V. Zhuravlev, J. Wosnitza, O. Ignatchik, B. Bergk, P.C. Canfield, Phys. Rev. B 73, 134521 (2006)CrossRefADSGoogle Scholar
  17. 17.
    H. Adachi, M. Sigrist, J. Phys. Soc. Jpn 77, 053704 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Schulich Faculty of Chemistry, Technion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations