The European Physical Journal B

, Volume 73, Issue 3, pp 455–459 | Cite as

Promotion of cooperation induced by nonuniform payoff allocation in spatial public goods game

  • D. Peng
  • H.-X. Yang
  • W.-X. Wang
  • G. R. Chen
  • B.-H. Wang
Interdisciplinary Physics


A nonuniform payoff allocation mechanism is proposed for spatial public goods games where individuals are nodes on a scale-free network. Each individual is assigned a weight ki α, where ki is the degree of individual i and α is an adjustable parameter that controls the degree of diversity in individuals’ profits. During the evolution progress, the allocation of payoff on individual i is assumed to be proportional to its weight. Individuals synchronously update their strategies according to the stochastic rule with a fixed noise level. It is found that there exists an optimal value of α which yields the highest level of cooperation. Other pertinent quantities, including the payoff and the probability of finding a node playing as cooperator versus the degree, are also investigated computationally and analytically. Our results suggest that a suitable degree of diversity among individuals can promote the emergence of cooperation.


Degree Distribution Perc Evolutionary Game Public Good Game Snowdrift Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.M. Colman, Game Theory and Its Applications in the Social and Biological Sciences (Butterworth-Heinemann, Oxford, 1995)Google Scholar
  2. 2.
    J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982)MATHGoogle Scholar
  3. 3.
    H. Gintis, Game Theory Evolving (Princeton University Press, Princeton, 2000)MATHGoogle Scholar
  4. 4.
    M.A. Nowak, R.M. May, Nature 359, 826 (1992)CrossRefADSGoogle Scholar
  5. 5.
    G. Szabó, C. Töke, Phys. Rev. E 58, 69 (1998)CrossRefADSGoogle Scholar
  6. 6.
    F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005)CrossRefADSGoogle Scholar
  7. 7.
    F.C. Santos, J.F. Rodrigues, J.M. Pacheco, Phys. Rev. E 72, 056128 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Z.-X. Wu, X.-J. Xu, Y. Chen, Y.-H. Wang, Phys. Rev. E 71, 037103 (2005)CrossRefADSGoogle Scholar
  9. 9.
    W.-X. Wang, J. Ren, G. Chen, B.-H. Wang, Phys. Rev. E 74, 056113 (2006)CrossRefADSGoogle Scholar
  10. 10.
    C.-L. Tang, W.-X. Wang, X. Wu, B.-H. Wang, Eur. Phys. J. B 53, 411 (2006)CrossRefADSGoogle Scholar
  11. 11.
    L.-X. Zhong, D.-F. Zheng, B. Zheng, C. Xu, P.M. Hui, Europhys. Lett. 76, 724 (2006)CrossRefADSGoogle Scholar
  12. 12.
    Z.-X. Wu, Y.-H. Wang, Phys. Rev. E 75, 041114 (2007)CrossRefADSGoogle Scholar
  13. 13.
    J. Poncela, J. Gómez-Gardeñes, L.M. Floría, Y. Moreno, New J. Phys. 9, 184 (2007)CrossRefADSGoogle Scholar
  14. 14.
    J. Gómez-Gardeñes, M. Campillo, L.M. Floría, Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007)CrossRefADSGoogle Scholar
  15. 15.
    A. Szolnoki, G. Szabó, Europhys. Lett. 77, 30004 (2007)CrossRefADSGoogle Scholar
  16. 16.
    A. Szolnoki, M. Perc, G. Szabó, Eur. Phys. J. B 61, 505 (2008).CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    M. Perc, A. Szolnoki, Phys. Rev. E 77, 011904 (2008)CrossRefADSGoogle Scholar
  18. 18.
    M. Perc, A. Szolnoki, G. Szabó, Phys. Rev. E 78, 066101 (2008)CrossRefADSGoogle Scholar
  19. 19.
    S. Assenza, J. Gómez-Gardeñes, V. Latora, Phys. Rev. E 78, 017101 (2008)CrossRefADSGoogle Scholar
  20. 20.
    J. Gómez-Gardeñes, J. Poncela, L.M. Floría, Y. Moreno, J. Theor. Biol. 253, 296 (2008)CrossRefGoogle Scholar
  21. 21.
    X.-J. Chen, F. Fu, L. Wang, Phys. Rev. E 78, 051120 (2008)CrossRefADSGoogle Scholar
  22. 22.
    F. Fu, C. Hauert, M.A. Nowak, L. Wang, Phys. Rev. E 78, 026117 (2008)CrossRefADSGoogle Scholar
  23. 23.
    W.-X. Wang, J. Lü G. Chen, P.M. Hui, Phys. Rev. E 77, 046109 (2008)CrossRefADSGoogle Scholar
  24. 24.
    A. Szolnoki, M. Perc, Z. Danku, Physica A 387, 2075 (2008)ADSGoogle Scholar
  25. 25.
    A. Szolnoki, M. Perc, Eur. Phys. J. B 67, 337 (2009)CrossRefADSGoogle Scholar
  26. 26.
    W.-B. Du, X.-B. Cao, M.-B. Hu, H.-X. Yang, H. Zhou, Physica A 388, 2215 (2009)CrossRefADSGoogle Scholar
  27. 27.
    W.-B. Du, X.-B. Cao, M.-B. Hu, W.-X. Wang, Europhys. Lett. 87, 60004 (2009)CrossRefGoogle Scholar
  28. 28.
    C. Hauert, S. De Monte, J. Hofbauer, K. Sigmund, Science 296, 1129 (2002)CrossRefADSGoogle Scholar
  29. 29.
    G. Szabó, C. Hauert, Phys. Rev. Lett. 89, 118101 (2002)CrossRefADSGoogle Scholar
  30. 30.
    C. Hauert, S. De Monte, J. Hofbauer, K. Sigmund, J. Theor. Biol. 218, 187 (2002)CrossRefGoogle Scholar
  31. 31.
    D. Semmann, H.J. Krambeck, M. Milinski, Nature 425, 390 (2003)CrossRefADSGoogle Scholar
  32. 32.
    H. Brandt, C. Hauert, K. Sigmund, Proc. Natl. Acad. Sci. 103, 495 (2006)CrossRefADSGoogle Scholar
  33. 33.
    J.-Y. Guan, Z.-X. Wu, Y.-H. Wang, Phys. Rev. E 76, 056101 (2007)CrossRefADSGoogle Scholar
  34. 34.
    W. Hichri, A. Kirman, Eur. Phys. J. B 55, 149 (2007)CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Z.-G. Huang, S.-J. Wang, X.-J. Xu, Y.-H. Wang, Europhys. Lett. 81, 28001 (2008)CrossRefADSGoogle Scholar
  36. 36.
    F.C. Santos, M.D. Santos, J.M. Pacheco, Nature 454, 213 (2008)CrossRefADSGoogle Scholar
  37. 37.
    H.-X. Yang, W.-X. Wang, Z.-X. Wu, Y.-C. Lai, B.-H. Wang, Phys. Rev. E 79, 056107 (2009)CrossRefADSGoogle Scholar
  38. 38.
    J. Wang, F. Fu, T. Wu, L. Wang, Phys. Rev. E 80, 016101 (2009)CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    C. Hauert, G. Szabó, Complexity 8, 31 (2003)CrossRefMathSciNetGoogle Scholar
  40. 40.
    A.L. Barabási, R. Albert, Science 286, 509 (1999)CrossRefMathSciNetGoogle Scholar
  41. 41.
    V. Pareto, Le Cours d’Économie Politique (Macmillan, Lausanne, Paris, 1987)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • D. Peng
    • 1
  • H.-X. Yang
    • 1
  • W.-X. Wang
    • 2
  • G. R. Chen
    • 3
  • B.-H. Wang
    • 1
    • 4
  1. 1.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.Department of Electrical EngineeringArizona State UniversityTempeUSA
  3. 3.Department of Electronic EngineeringCity University of Hong KongKowloon Hong Kong SARP.R. China
  4. 4.Research Center for Complex System Science, University of Shanghai for Science and Technology and Shanghai Academy of System ScienceShanghaiP.R. China

Personalised recommendations