Advertisement

The European Physical Journal B

, Volume 73, Issue 2, pp 303–308 | Cite as

Traffic optimization in transport networks based on local routing

  • S. Scellato
  • L. Fortuna
  • M. Frasca
  • J. Gómez-Gardeñes
  • V. Latora
Interdisciplinary Physics

Abstract

Congestion in transport networks is a topic of theoretical interest and practical importance. In this paper we study the flow of vehicles in urban street networks. In particular, we use a cellular automata model on a complex network to simulate the motion of vehicles along streets, coupled with a congestion-aware routing at street crossings. Such routing makes use of the knowledge of agents about traffic in nearby roads and allows the vehicles to dynamically update the routes towards their destinations. By implementing the model in real urban street patterns of various cities, we show that it is possible to achieve a global traffic optimization based on local agent decisions.

Keywords

Transport Network Network Load Urban Street Global Knowledge Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Wardrop, Some theoretical aspects of road traffic research (Institute of Civil Engineers, 1952)Google Scholar
  2. 2.
    D. Helbing, Rev. Mod. Phys. 73, 10067 (2001)CrossRefGoogle Scholar
  3. 3.
    D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000)CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge Univ. Press, Cambridge, 2004)Google Scholar
  5. 5.
    D. Belomestny, V. Jentsch, M. Schreckenberg, J. Phys. A 36, 11369 (2003)MathSciNetADSGoogle Scholar
  6. 6.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    R. Guimerá, A. Díaz-Guilera, F. Vega-Redondo, A. Cabrales, A. Arenas, Phys. Rev. Lett. 89, 248701 (2002)CrossRefADSGoogle Scholar
  8. 8.
    P. Echenique, J. Gómez-Gardeñes, Y. Moreno, Phys. Rev. E 70, 056105 (2004)CrossRefADSGoogle Scholar
  9. 9.
    P. Echenique, J. Gómez-Gardeñes, Y. Moreno, Eur. Phys. Lett. 71, 325 (2005)CrossRefADSGoogle Scholar
  10. 10.
    B. Tadic, G.J. Rodgers, Advances in Complex Systems 5 (2002)Google Scholar
  11. 11.
    B. Kujawski, J.G. Rodgers, B. Tadic, Lecture Notes in Computer Science — Part III 3993} (2006)Google Scholar
  12. 12.
    P. Crucitti, V. Latora, M. Marchiori, Phys. Rev. E 69, 045104R (2004)CrossRefADSGoogle Scholar
  13. 13.
    I. Leontiadis, C. Mascolo, ACM/SIGMOBILE MobiOpp (2007)Google Scholar
  14. 14.
    A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E 73, 066107 (2006)CrossRefADSGoogle Scholar
  15. 15.
    S. Wolfram, Rev. Mod. Phys. 55, 601 (1983)MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    J. Esser, M. Schreckenberg, Int. J. Mod. Phys. C 8, 1025 (1997)CrossRefADSGoogle Scholar
  17. 17.
    D. Helbing, Phys. Rev. E 57, 6176 (1998)CrossRefADSGoogle Scholar
  18. 18.
    K. Nagel, M. Schreckenberg, J. Phys. I France 2, 2221 (1992)CrossRefGoogle Scholar
  19. 19.
    A time step is assumed to be be equal to 1 sec, the minimum time of reaction of a driverGoogle Scholar
  20. 20.
    O. Biham, A.A. Middleton, D. Levine, Phys. Rev. A 46, R6124 (1992)CrossRefADSGoogle Scholar
  21. 21.
    D. Chowdhury, A. Schadschneider, Phys. Rev. E 59, R1311 (1999)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Scellato
    • 1
  • L. Fortuna
    • 2
    • 1
  • M. Frasca
    • 2
    • 1
  • J. Gómez-Gardeñes
    • 3
    • 1
    • 4
  • V. Latora
    • 5
    • 1
  1. 1.Laboratorio sui Sistemi ComplessiScuola Superiore di CataniaCataniaItaly
  2. 2.Dipartimento di Ingegneria Elettrica, Elettronica e dei SistemiUniversità degli Studi di CataniaCataniaItaly
  3. 3.Departamento de Matemática Aplicada, ESCETUniversidad Rey Juan CarlosMóstoles MadridSpain
  4. 4.Instituto de Biocomputación y Física Sistemas Complejos (BIFI), Universidad de ZaragozaZaragozaSpain
  5. 5.Dipartimento di Fisica e AstronomiaUniversità di Catania and INFN, Sezione di CataniaCataniaItaly

Personalised recommendations