Advertisement

The European Physical Journal B

, Volume 73, Issue 2, pp 167–175 | Cite as

Piezoelastic properties of retgersite determined by ultrasonic measurements

  • D. Arbeck
  • E. Haussühl
  • L. Bayarjagal
  • B. Winkler
  • N. Paulsen
  • S. Haussühl
  • V. Milman
Solid State and Materials

Abstract

The elastic tensor of the tetragonal NiSO4 . 6H2O (retgersite) was measured with a resonant ultrasonic plane parallel plate technique at room temperature as a function of hydrostatic pressure in the range of 0.1-50 MPa and the piezoelastic coefficients have been derived. The monotonic increase in the cij shows that retgersite does not undergo a phase transition in this pressure range. Density functional theory (DFT) based calculations within the linear response method were used to predict the variation of the cij in the range of 1-1000 MPa in the static limit. A comparison of the two data sets shows that while structural parameters and elastic stiffness coefficients are well reproduced by the DFT model, theoretical piezoelastic coefficients of compressible compounds are only in moderate agreement with the corresponding experimental values. The limitations of DFT-based calculations for the calculation of piezoelastic coefficients are discussed.

Keywords

Density Functional Theory Interatomic Distance Ultrasonic Wave Ultrasonic Measurement Resonant Ultrasound Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.D. Steele, F.M.G. Johnson, J. Chemical Soc. 85, 113 (1904)Google Scholar
  2. 2.
    J.I. Jambor, D.K. Nordstrom, C.N. Alpers, Sulfate Minerals-Crystallography, Geochemistry and Environmental Significance 40, 303 (2000)Google Scholar
  3. 3.
    J.L. Janjic, M. Gakovic, D. Dordevic, P. Bugarski, Chem. Abstracts 95, 5 (1980)Google Scholar
  4. 4.
    F.C. Hawthorne, Zeitschrift für Kristallographie 192, 1 (1990)Google Scholar
  5. 5.
    F.C. Hawthorne, S.V. Krivovichev, P.C. Burns, Sulfate Minerals-Crystallography, Geochemistry and Environmental Significance 40, 1 (2000)Google Scholar
  6. 6.
    I.M. Chou, R.R. Seal, American Mineralogist 88, 1943 (2003)Google Scholar
  7. 7.
    T.G. Cooper, N.H. de Leeuw, J. Crystal Growth 294, 137 (2006), DOI 10.1016/j.jcrysgro.2006.05.032CrossRefADSGoogle Scholar
  8. 8.
    C.D. Adam, J. Solid State Chem. 174, 141 (2003), DOI 10.1016/S0022-4596(03)00190-7CrossRefADSGoogle Scholar
  9. 9.
    V. Stojanoff, F.P. Missell, J. Chem. Phys. 77, 939 (1982)CrossRefADSGoogle Scholar
  10. 10.
    S.K. Kor, S.S. Bhatti, Indian Journal of Pure & Applied Physics 7, 259 (1969)Google Scholar
  11. 11.
    C.A. Beevers, H. Lipson, Zeitschrift für Kristallographie 83, 123 (1932)Google Scholar
  12. 12.
    M.O. Bargouth, G. Will, Int. Cent. Theor. Phys. Rep. 103, 1 (1981)Google Scholar
  13. 13.
    B.H. O’Connor, D.H. Dale, Acta Crystallographica 21, 705 (1966)CrossRefGoogle Scholar
  14. 14.
    K. Stadnicka, A.M. Glazer, M. Koralewski, Acta Crystallographica Section B-Structural Science 43, 319 (1987)CrossRefGoogle Scholar
  15. 15.
    R.J. Angel, L.W. Finger, Acta Crystallographica Section C-Crystal Structure Communications 44, 1869 (1988)CrossRefGoogle Scholar
  16. 16.
    E. Haussühl, E. Tillmanns, Zeitschrift für Kristallographie 212, 826 (1997)CrossRefGoogle Scholar
  17. 17.
    R. Podeswa, S. Haussühl, Zeitschrift für Kristallographie 178, 183 (1987)Google Scholar
  18. 18.
    B.J. Zadler, J.H.L. Le Rousseau, J.A. Scales, M.L. Smith, Geophysical J. Int. 156, 154 (2004), doi: DOI 10.1111/j.1365-246X.2004.02093.xCrossRefADSGoogle Scholar
  19. 19.
    R.G. Leisure, F.A. Willis, J. Phys.: Condens. Matter 9, 6001 (1997)CrossRefADSGoogle Scholar
  20. 20.
    J. Schreuer, IEEE Transactions On Ultrasonics Ferroelectrics and Frequency Control 49, 1474 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Migliori, J.L. Sarrao, Resonant ultrasound spectroscopy: applications to physics, materials measurements, and nondestructive evaluation (John Wiley and Sons, Inc., 1997)Google Scholar
  22. 22.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Zeitschrift für Kristallographie 220, 567 (2005)CrossRefGoogle Scholar
  23. 23.
    CASTEP User Guide (Accelrys Inc., San Diego, CA, 2008)Google Scholar
  24. 24.
    V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Int. J. Quantum Chemistry 77, 895 (2000)CrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefADSGoogle Scholar
  26. 26.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    B. Winkler, M. Hytha, C. Pickard, V. Milman, M. Warren, M. Segall, Eur. J. Mineralogy 13, 343 (2001)CrossRefGoogle Scholar
  28. 28.
    R.E. Cohen, J. Phys. Chem. Solids 61, 139 (2000)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. Arbeck
    • 1
  • E. Haussühl
    • 1
  • L. Bayarjagal
    • 1
  • B. Winkler
    • 1
  • N. Paulsen
    • 1
  • S. Haussühl
    • 2
  • V. Milman
    • 3
  1. 1.Institut für Geowissenschaften, Abt. Kristallographie, Goethe Universität FrankfurtFrankfurtGermany
  2. 2.Institut für Kristallographie, Universität zu KölnKölnGermany
  3. 3.Accelrys Inc., 334 Cambridge Science ParkCambridgeUK

Personalised recommendations