The European Physical Journal B

, Volume 73, Issue 1, pp 109–115 | Cite as

LCAO model for 3D Fermi surface of high-Tc cuprate Tl2Ba2CuO6+δ

  • M. Stoev
  • T. M. Mishonov
Solid State and Materials


A simple analytical formula for three-dimensional Fermi surface (3D FS) of \({\rm Tl}_2{\rm Ba}_2{\rm CuO}_{6+\delta}\) is derived in the framework of LCAO approximation spanned over Cu 4s, Cu 3d\(3d_{x^2 - y^2 }\), O 2px and O 2py states. This analytical result can be used for fitting of experimental data for 3D FS such as polar angle magnetoresistance oscillation. The model takes into account effective copper-copper hopping amplitude tss between Cu 4s orbitals from neighbouring \({\textrm{CuO}_2}\) layers. The acceptable correspondence with the experimental data gives a hint that the tss amplitude dominates in formation of coherent 3D FS, and other oxygen-oxygen and copper-oxygen amplitudes are rather negligible. For absolute determination of the hopping parameters a simple electronic experiment with a field effect transistor type microstructure is suggested. The thin superconductor layer is the source-drain channel of the layered structure where an AC current is applied.


Fermi Surface Fermi Contour Local Density Approxima Simple Elec Single Site Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Shoenberg, Magnetic oscillations in metals (Cambridge, Cambridge University Press, 1984)Google Scholar
  2. 2.
    N.E. Hussey, M. Abdel-Jawad, A. Carrington, L. Balicas, Nature 425, 814 (2003)CrossRefADSGoogle Scholar
  3. 3.
    A.A. Abrikosov, Physica C 391, 147 (2003)CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    D.J. Singh, W.E. Pickett, Physica C 203, 193 (1992)CrossRefADSGoogle Scholar
  5. 5.
    J. Labbé, J. Bok, Europhys. Lett. 3, 1225 (1987)CrossRefADSGoogle Scholar
  6. 6.
    O.K. Andersen, A.I. Liechtenstein, O. Jepsen, F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995)CrossRefADSGoogle Scholar
  7. 7.
    T.M. Mishonov, E.S. Penev, J. Phys.:Condens. Matter 12, 143 (2000); arXiv:cond-mat/0001049CrossRefADSGoogle Scholar
  8. 8.
    R.P. Feynman R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Weslay, London, 1963), Vol 3, Ch. 11Google Scholar
  9. 9.
    J.C. Slater, Electronic structure of molecules (McGraw-Hill, London, 1963), Chp. 2MATHGoogle Scholar
  10. 10.
    T.M. Mishonov, J.O. Indekeu, E.S. Penev, Int. J. Mod. Phys. B 16, 4577 (2002), Figure 1; arXiv:cond-mat/0206350CrossRefADSGoogle Scholar
  11. 11.
    T.M. Mishonov, J.O. Indekeu, E.S. Penev, J. Phys.: Condens. Matter 15, 4429 (2003), Equation (2.4); arXiv:cond-mat/0209191CrossRefADSGoogle Scholar
  12. 12.
    A. Damascelli et al., Rev. Mod. Phys. 75, 473 (2003)CrossRefADSGoogle Scholar
  13. 13.
    M. Platé et al., Fermi Surface Quasiparticle Excitations of Overdoped Tl2Ba2CuO6+δ by ARPES, arXiv:cond-mat/0503117 (2005)Google Scholar
  14. 14.
    J. Friedel, J. Phys.: Condens. Matt. 1, 7757 (1989)CrossRefADSGoogle Scholar
  15. 15.
    J. Labbe, J. Bok, Europhys. Lett. 3, 1225 (1987)CrossRefADSGoogle Scholar
  16. 16.
    J. Bouvier, J. Bok, J. Superconductivity 10, 673 (1997)CrossRefADSGoogle Scholar
  17. 17.
    J. Bouvier, J. Bok, Physica, C 364, 471 (2001)CrossRefADSGoogle Scholar
  18. 18.
    J. Bouvier, J. Bok, Physica C 288, 217 (1997)CrossRefADSGoogle Scholar
  19. 19.
    R.S. Markiewicz, J. Physics.: Condens. Matt. 2, 665 (1990)CrossRefADSGoogle Scholar
  20. 20.
    R.S. Markiewicz, J. Phys. Chem. Solids 58, 1179 (1997)CrossRefADSGoogle Scholar
  21. 21.
    D.M. Newns, C.C. Tsuei, P.C. Pattnaik, Phys. Rev. 52, 13611 (1995)CrossRefGoogle Scholar
  22. 22.
    C.C. Tsuei, C.C. Chi, D.M. Newns, P.C. Pattnaik, Däumling, Phys. Rev. Lett. 69, 2134 (1992)CrossRefADSGoogle Scholar
  23. 23.
    T.M. Mishonov, N. Chénne, D. Robes, J.O. Indekeu, Eur. Phys. J. B 26, 291 (2002); arXiv:cond-mat/0109478ADSGoogle Scholar
  24. 24.
    N. Chénne, T.M. Mishonov, J.O. Indekeu, Eur. Phys. J. B 32, 437 (2003); arXiv:cond-mat/0110632CrossRefADSGoogle Scholar
  25. 25.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, New York, 1977), Part 1, Chapt. 5Google Scholar
  26. 26.
    I.M. Lifshitz, M.Y. Azbel, M.I. Kaganov Electron Theory of Metals (Consultants Bureau, New York, 1973)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsFaculty of Physics, University of Sofia St. Clement of OhridSofiaBulgaria

Personalised recommendations