Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12

  • S. Krohns
  • J. Lu
  • P. Lunkenheimer
  • V. Brizé
  • C. Autret-Lambert
  • M. Gervais
  • F. Gervais
  • F. Bourée
  • F. Porcher
  • A. Loidl
Solid State and Materials


The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and X-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T. At low temperatures the dielectric constant shows a minor but significant dependence on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.


77.22.Ch Permittivity (dielectric function) 77.84.Dy Niobates, titanates, tantalates, PZT ceramics, etc. 75.50.Ee Antiferromagnetics 


  1. 1.
    B. Bochu, M.N. Deschizeaux, J.C. Joubert, A. Collomb, J. Chenavas, M. Marezio, J. Solid State Chem. 29, 291 (1979)CrossRefADSGoogle Scholar
  2. 2.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)CrossRefADSGoogle Scholar
  3. 3.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)CrossRefADSGoogle Scholar
  4. 4.
    N.A. Vasil’ev, O.S. Volkova, Low Temp. Phys. 33, 895 (2007)CrossRefADSGoogle Scholar
  5. 5.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)CrossRefADSGoogle Scholar
  6. 6.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefADSGoogle Scholar
  7. 7.
    T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mat. 14, 1321 (2002)CrossRefGoogle Scholar
  8. 8.
    M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)CrossRefADSGoogle Scholar
  9. 9.
    M.H. Cohen, J.B. Neaton, L. He, D. Vanderbilt, J. Appl. Phys. 94, 3299 (2003)CrossRefADSGoogle Scholar
  10. 10.
    S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nature Mat. 3, 774 (2004)CrossRefADSGoogle Scholar
  11. 11.
    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)CrossRefADSGoogle Scholar
  12. 12.
    L. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, C.C. Homes, Phys. Rev. B 65, 214112 (2002)CrossRefADSGoogle Scholar
  13. 13.
    J. Sebald, S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, S. Riegg, A. Reller, A. Loidl, e-print arXiv:0903.4189Google Scholar
  14. 14.
    R. Weht, W.E. Pickett, Phys. Rev. B 65, 014415 (2002)CrossRefADSGoogle Scholar
  15. 15.
    M.N. Deschizeaux, J.C. Joubert, A. Vegas, A. Collomb, J. Chenavas, M. Marezio, J. Solid State Chem. 19, 45 (1976)CrossRefADSGoogle Scholar
  16. 16.
    J. Chenavas, J.C. Joubert, M. Marezio, B. Bochu, J. Solid State Chem. 14, 25 (1975)CrossRefADSGoogle Scholar
  17. 17.
    W. Kobayashi, I. Terasaki, J. Takeya, I. Tsukada, Y. Ando, J. Phys. Soc. Jpn 73, 2373 (2004)CrossRefADSGoogle Scholar
  18. 18.
    A. Krimmel, A. Günther, W. Kraetschmer, H. Dekinger, N. Büttgen, A. Loidl, S.G. Ebbinghaus, E.-W. Scheidt, W. Scherer, Phys. Rev. B 78, 165126 (2008)CrossRefADSGoogle Scholar
  19. 19.
    see, e.g., Y. Lin, Y.B. Chen, T. Garret, S.W. Liu, C.L. Chen, L. Chen, R.P. Bontchev, A. Jacobson, J.C. Jiang, E.I. Meletis, Appl. Phys. Lett. 81, 631 (2002); R.L. Nigro, R.G. Toro, G. Malandrino, I.L. Fragala, M. Losurdo, M.M. Giangregorio, G. Bruno, V. Raineri, P. Fiorenza, J. Phys. Chem. B 110, 17460 (2006); P. Fiorenza, R.L. Nigro, A. Sciuto, P. Delugas, V. Raineri, R.G. Toro, M.R. Catalano, G. Malandrino, J. Appl. Phys. 105, 061634 (2009)CrossRefADSGoogle Scholar
  20. 20.
    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)CrossRefADSGoogle Scholar
  21. 21.
    S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, Appl. Phys. Lett. 91, 022910 (2007); S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, Appl. Phys. Lett. 91, 149902 (2007)CrossRefADSGoogle Scholar
  22. 22.
    G. Deng, T. Yamada, P. Muralt, Appl. Phys. Lett. 91, 202903 (2007)CrossRefADSGoogle Scholar
  23. 23.
    V. Brize, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, F. Gervais, Mat. Sci. Eng. B 129, 135 (2006)CrossRefGoogle Scholar
  24. 24.
    M. Maglione, J. Phys. Condens. Matter 20, 322202 (2008)CrossRefGoogle Scholar
  25. 25.
    W. Kobayashi, I. Terasaki, Physica B 329, 771 (2003)CrossRefADSGoogle Scholar
  26. 26.
    S.-Y. Chung, S.-Y. Choi, T. Yamamoto, Y. Ikuhara, S.-J.L. Kang, Appl. Phys. Lett. 88, 091917 (2006)CrossRefADSGoogle Scholar
  27. 27.
    M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 88, 232903 (2006)CrossRefADSGoogle Scholar
  28. 28.
    R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, G.A. Samara, Phys. Rev. B 72, 104111 (2005)CrossRefADSGoogle Scholar
  29. 29.
    V. Brize, C. Autret-Lambert, J. Wolfman, M. Gervais, P. Simon, F. Gervais, Solid State Science 11, 875 (2009)CrossRefADSGoogle Scholar
  30. 30.
    M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 91, 132911 (2007)CrossRefADSGoogle Scholar
  31. 31.
    C. Kant, T. Rudolf, F. Mayr, S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 77, 045131 (2008)CrossRefADSGoogle Scholar
  32. 32.
    S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, J. Appl. Phys. 103, 084107 (2008)CrossRefADSGoogle Scholar
  33. 33.
    A. Douy, Intern. J. Inorg. Mat. 3, 699 (2001)CrossRefGoogle Scholar
  34. 34.
    A. Hassini, M. Gervais, J. Coulon, V.T. Phuoc, F. Gervais, Mat. Sci. Eng. B 87, 164 (2001)CrossRefGoogle Scholar
  35. 35.
    U. Schneider, P. Lunkenheimer, A. Pimenov, R. Brand, A. Loidl, Ferroelectrics 249, 89 (2001)CrossRefGoogle Scholar
  36. 36.
    J. Rodriguez-Carvajal, Physica B 192, 55 (1993)CrossRefADSGoogle Scholar
  37. 37.
    H. Toraya, J. Appl. Cryst. 23, 485 (1990)CrossRefGoogle Scholar
  38. 38.
    I.D. Brown, in Structure and bonding in crystals, edited by M. O’Keefe, A. Navrotsky (Academic Press, New York 2, 1981)Google Scholar
  39. 39.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefADSGoogle Scholar
  40. 40.
    J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004)CrossRefGoogle Scholar
  41. 41.
    A. Collomb, D. Samaras, B. Bochu, J.C. Joubert, Phys. Stat. Sol. A 41, 459 (1977)CrossRefGoogle Scholar
  42. 42.
    Y.J. Kim, S. Wakimoto, S.M. Shapiro, P.M. Gehring, A.P. Ramirez, Solid State Commun. 121, 625 (2002)CrossRefADSGoogle Scholar
  43. 43.
    C. Lacroix, J. Phys. C: Solid St. Phys. 13, 5125 (1980)CrossRefADSGoogle Scholar
  44. 44.
    T. Park, Z. Nussinov, K.R.A. Hazzard, V.A. Sidorov, A.V. Balatsky, J.L. Sarrao, S.-W. Cheong, M.F. Hundley, J.-S. Lee, Q.X. Jia, J.D. Thompson, Phys. Rev. Lett. 94, 017002 (2005); P. Lunkenheimer, T. Götzfried, R. Fichtl, S. Weber, T. Rudolf, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Solid State Chem. 179, 3965 (2006); S. Krohns, P. Lunkenheimer, C. Kant, A.V. Pronin, H.B. Brom, A.A. Nugroho, M. Diantoro, A. Loidl, Appl. Phys. Lett. 94, 122903 (2009); B. Renner, P. Lunkenheimer, M. Schetter, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Appl. Phys. 96, 4400} (2004); J.L. Cohn, M. Peterca, J.J. Neumeier, J. Appl. Phys. 97, 034102 (2005)CrossRefADSGoogle Scholar
  45. 45.
    P. Fiorenza, R.L. Nigro, C. Bongiorno, V. Raineri, M.C. Ferarrelli, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 92, 182907 (2008)CrossRefADSGoogle Scholar
  46. 46.
    S.R. Elliott, Adv. Phys. 36, 135 (1987); A.R. Long, Adv. Phys. 31, 553 (1982)CrossRefADSGoogle Scholar
  47. 47.
    K.A. Müller, H. Burkard, Phys. Rev. B 19, 3593 (1979)CrossRefADSGoogle Scholar
  48. 48.
    J.H. Barrett, Phys. Rev. 86, 118 (1952)CrossRefADSGoogle Scholar
  49. 49.
    J. Hemberger, P. Lunkenheimer, R. Viana, R. Böhmer, A. Loidl, Phys. Rev. B 52, 13159 (1995)CrossRefADSGoogle Scholar
  50. 50.
    J.G. Bednorz, K.A. Müller, Phys. Rev. Lett. 52, 2289 (1984); C. Ang, Z. Yu, P. Lunkenheimer, J. Hemberger, A. Loidl, Phys. Rev. B 59, 6670 (1999)CrossRefADSGoogle Scholar
  51. 51.
    J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl, R. Böhmer, J. Phys.: Cond. Matter 8, 4673 (1996)CrossRefADSGoogle Scholar
  52. 52.
    J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li, J.F. Wang, Appl. Phys. Lett. 87, 142901 (2005)CrossRefADSGoogle Scholar
  53. 53.
    Y. Zhu, J.C. Zheng, L. Wu, A.I. Frenkel, J. Hanson, P. Northrup, W. Ku, Phys. Rev. Lett. 99, 037602 (2007)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Krohns
    • 1
  • J. Lu
    • 1
    • 2
  • P. Lunkenheimer
    • 1
  • V. Brizé
    • 3
  • C. Autret-Lambert
    • 3
  • M. Gervais
    • 3
  • F. Gervais
    • 3
  • F. Bourée
    • 4
  • F. Porcher
    • 4
  • A. Loidl
    • 1
  1. 1.Experimental Physics V, Center for Electronic Correlations and Magnetism, University of AugsburgAugsburgGermany
  2. 2.School of Materials Science and Engineering, University of Science and Technology BeijingBeijingP.R. China
  3. 3.Laboratoire LEMA, UMR 6157 CNRS-CEA, Université F. RabelaisToursFrance
  4. 4.Laboratoire Léon Brillouin CEA SaclayGif-sur-Yvette CedexFrance

Personalised recommendations