The electromagnetic response of a fermion system at zero temperature

Solid State and Materials
  • 42 Downloads

Abstract

An investigation is shown whether the Meissner-Ochsenfeld effect exists in a gas of spin 1/2 fermions in which an attraction (denoted by W) between particles having the same momenta and opposite spins as well as a BCS type four-fermion interaction between pairs are present in a system. The former potential is equivalent to the effective kinetic energy of free fermion pairs. The latter interaction (denoted by V4) is responsible for the presence of fermion quadruples in the system. The Meissner effect proves to be weaker than in BCS theory, implying a larger penetration depth λ of the external magnetic field in the regime of the weak attraction W; however, this effect turns out to exist even when the gap parameter of quadruples vanishes. In this regime the strength of the Meissner effect is the same as in the BCS case.

PACS

74.20.-z Theories and models of superconducting state 74.20.fg BCS theory and its development 

References

  1. 1.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    D. Borycki, Eur. Phys. J. B 65, 2938 (2008)CrossRefGoogle Scholar
  3. 3.
    G. Rickayzen, Theory of Superconductivity (Interscience, New York, London, 1965)MATHGoogle Scholar
  4. 4.
    Ø Fischer, Magnetic Superconductors in Ferromagnetic Materials, edited by K.H.J. Buschow, E.P. Wohlfarth (Elsevier Science Publishers B.V., 1990), Vol. 5Google Scholar
  5. 5.
    P. Tarasewicz, D. Baran, Phys. Rev. B 73, 094524 (2006)CrossRefADSGoogle Scholar
  6. 6.
    P. Tarasewicz, Eur. Phys. J. B 41, 185 (2004)CrossRefADSGoogle Scholar
  7. 7.
    G.E. Volovik, Exotic Properties of Superfluid 3 He (World Scientific, Singapore, 1992)Google Scholar
  8. 8.
    Yu.M. Bunkov, A.S. Chen, D.J. Cousins, H. Godfrin, Phys. Rev. Lett. 85, 3456 (2000)CrossRefADSGoogle Scholar
  9. 9.
    R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990)CrossRefADSGoogle Scholar
  10. 10.
    J. Maćkowiak, P. Tarasewicz, Acta Phys. Polonica A 93, 659 (1998)Google Scholar
  11. 11.
    G.I. Japaridze, A.P. Kampf, M. Sekania, P. Kakashvili, Ph. Brune, Phys. Rev. B 65, 014518 (2002)CrossRefADSGoogle Scholar
  12. 12.
    G.I. Japaridze, S. Sarkar, Eur. Phys. J. B 28, 139 (2002)CrossRefADSGoogle Scholar
  13. 13.
    S.P. Strong, Phys. Rev. B 51, 16229 (1995)CrossRefADSGoogle Scholar
  14. 14.
    A.E Sikkema, I. Affleck, Phys. Rev. B 52, 10207 (1995)CrossRefADSGoogle Scholar
  15. 15.
    G. Bouzerar, G.I. Japaridze, [cond-mat/9605161]Google Scholar
  16. 16.
    M. Bossche, M. Caffarel, Phys. Rev. B 54, 17414 (1996)CrossRefADSGoogle Scholar
  17. 17.
    S. Robaszkiewicz, B. Bułka, Phys. Rev. B 59, 6430 (1999)CrossRefADSGoogle Scholar
  18. 18.
    K. Byczuk, J. Spałek, Phys. Rev. B, 50 11403 (1994)Google Scholar
  19. 19.
    Y. Hatsugai, M. Kohmoto, J. Phys. Soc. Jpn 61, 2056 (1992)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    J. Spałek, W. Wójcik, Phys. Rev. B 37 1532 (1988)CrossRefADSGoogle Scholar
  21. 21.
    F. Gebhard, The Mott Metal-Insulator Transition (Springer Verlag, Berlin, 1997)Google Scholar
  22. 22.
    J. Czerwonko, Physica C 235–240, 2337(1994)CrossRefGoogle Scholar
  23. 23.
    J. Czerwonko, Mol. Phys. Rep. 12, 79 (1995)Google Scholar
  24. 24.
    C.W. Schneider, G. Hammerl, G. Logvenov, T. Kopp, J.R. Kirtley, P.J. Hirschfeld, J. Mannhart, Europhys. Lett. 68, 86 (2004)CrossRefADSGoogle Scholar
  25. 25.
    H. Kleinert, J. Phys. G 8, 239 (1982)CrossRefADSGoogle Scholar
  26. 26.
    G. Röpke, A. Schnell, P. Schuck, P. Nozieres, Phys. Rev. Lett. 80, 3177 (1998)CrossRefADSGoogle Scholar
  27. 27.
    T. Schneider, H. Keller, Int. J. Mod. Phys. B 8, 487 (1993)CrossRefADSGoogle Scholar
  28. 28.
    A.A. Aligia, A.P. Kampf, J. Mannhart, Phys. Rev. Lett. 94, 247004 (2005)CrossRefADSGoogle Scholar
  29. 29.
    P. Kleinert, [cond-mat.supr-cond 0802.1459v1]Google Scholar
  30. 30.
    A.A. Abrikosov, Fundamentals of the Theory of Metals (North Holland, Amsterdam, 1978)Google Scholar
  31. 31.
    M. Krzyzosiak, R. Gonczarek, Physica C 426–431 273 (2005)CrossRefGoogle Scholar
  32. 32.
    J. Schrieffer, Theory of Superconductivity (W.A. Benjamin, Inc., New York, 1964)MATHGoogle Scholar
  33. 33.
    G. Rickayzen, Green’s Functions and Condensed Matter (Academic Press, New York, London, 1980)MATHGoogle Scholar
  34. 34.
    P. Tarasewicz, Eur. Phys. J. B 61, 3345 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Bardeen, Phys. Rev. 97, 1724 (1955)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of StellenboschStellenboschSouth Africa
  2. 2.Faculty of Pharmacy, Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in ToruńBydgoszczPoland

Personalised recommendations