Tunneling spectra of submicron Bi2Sr2CaCu2O8+ δ intrinsic Josephson junctions: evolution from superconducting gap to pseudogap

  • S. P. Zhao
  • X. B. Zhu
  • H. Tang
Solid State and Materials


Tunneling spectra of near optimally doped, submicron Bi2Sr2CaCu2O8+ δ intrinsic Josephson junctions are presented, and examined in the region where the superconducting gap evolves into pseudogap. The spectra are analyzed using a self-energy model, proposed by Norman et al., in which both quasiparticle scattering rate Γ and pair decay rate ΓΔ are considered. The density of states derived from the model has the familiar Dynes’ form with a simple replacement of Γ by γ+ = (Γ+ΓΔ)/2. The γ+ parameter obtained from fitting the experimental spectra shows a roughly linear temperature dependence, which puts a strong constraint on the relation between Γ and ΓΔ. We discuss and compare the Fermi arc behavior in the pseudogap phase from the tunneling and angle-resolved photoemission spectroscopy experiments. Our results indicate an excellent agreement between the two experiments, which is in favor of the precursor pairing view of the pseudogap.


74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects 74.25.Jb Electronic structure 74.72.Hs Bi-based cuprates 


  1. 1.
    T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999)CrossRefADSGoogle Scholar
  2. 2.
    V.J. Emery, S.A. Kivelson, Nature 374, 434 (1995); A. Kanigel, U. Chatterjee, M. Randeria, M.R. Norman, G. Koren, K. Kadowaki, J.C. Campuzano, e-print arXiv:cond-mat/0803.3052v1 (2008)CrossRefADSGoogle Scholar
  3. 3.
    M.R. Norman, M. Randeria, H. Ding, J.C. Campuzano, Phys. Rev. B 57, R11093 (1998)CrossRefADSGoogle Scholar
  4. 4.
    M.R. Norman, A.V. Chubukov, Phys. Rev. B 73, R140501 (2006)CrossRefADSGoogle Scholar
  5. 5.
    A.S. Alexandrov, A.F. Andreev, e-print arXiv:cond-mat/0005315v3 (2000)Google Scholar
  6. 6.
    K.A. Müller, in Handbook of High-Temperature Superconductivity, edited by J.R. Schrieffer, J.S. Brooks (Springer, New York, 2007)Google Scholar
  7. 7.
    P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)CrossRefADSGoogle Scholar
  8. 8.
    D. Pines, Physica C 282–287, 273 (1997)CrossRefGoogle Scholar
  9. 9.
    J.X. Li, C.Q. Wu, D.H. Lee, Phys. Rev. B 74, R184515 (2006)CrossRefADSGoogle Scholar
  10. 10.
    M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D.G. Hinks, Nature 392, 157 (1998)CrossRefADSGoogle Scholar
  11. 11.
    A. Kanigel, M.R. Norman, M. Randeria, U. Chatterjee, S. Souma, A. Kaminski, H.M. Fretwell, S. Rosenkranz, M. Shi, T. Sato, T. Takahashi, Z.Z. Li, H. Raffy, K. Kadowaki, D. Hinks, L. Ozyuzer, J.C. Campuzano, Nat. Phys. 2, 447 (2006)CrossRefGoogle Scholar
  12. 12.
    W.S. Lee, I.M. Vishik, K. Tanaka, D.H. Lu, T. Sasagawa, N. Nagaosa, T.P. Devereaux, Z. Hussain, Z.-X. Shen, Nature 450, 81 (2007)CrossRefADSGoogle Scholar
  13. 13.
    A. Kanigel, U. Chatterjee, M. Randeria, M.R. Norman, S. Souma, M. Shi, Z.Z. Li, H. Raffy, J.C. Campuzano, Phys. Rev. Lett. 99, 157001 (2007)CrossRefADSGoogle Scholar
  14. 14.
    M.R. Norman, A. Kanigel, M. Randeria, U. Chatterjee, J.C. Campuzano, Phys. Rev. B 76, 174501 (2007)CrossRefADSGoogle Scholar
  15. 15.
    A.V. Chubukov, M.R. Norman, A.J. Millis, E. Abrahams, Phys. Rev. B 76, R180501 (2007)CrossRefADSGoogle Scholar
  16. 16.
    J.G. Storey, J.L. Tallon, G.V.M. Williams, J.W. Loram, Phys. Rev. B 76, R060502 (2007)CrossRefADSGoogle Scholar
  17. 17.
    J.R. Schrieffer, Theory of Superconductivity (Benjamin, New York, 1964)MATHGoogle Scholar
  18. 18.
    E.L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford University Press, New York, 1985)Google Scholar
  19. 19.
    C. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, ϕ. Fischer, Phys. Rev. Lett. 80, 149 (1998); C. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile, ϕ. Fischer, Phys. Rev. Lett. 80, 3606 (1998); M. Kugler, ϕ. Fischer, C. Renner, S. Ono, Yoichi Ando, Phys. Rev. Lett. 86, 4911 (2001)CrossRefADSGoogle Scholar
  20. 20.
    J.F. Zasadzinski, L. Ozyuzer, L. Coffey, K.E. Gray, D.G. Hinks, C. Kendziora, Phys. Rev. Lett. 96, 017004 (2006); J.F. Zasadzinski, L. Ozyuzer, N. Miyakawa, K.E. Gray, D.G. Hinks, C. Kendziora, Phys. Rev. Lett. 87, 067005 (2001)CrossRefADSGoogle Scholar
  21. 21.
    V.M. Krasnov, A. Yurgens, D. Winkler, P. Delsing, T. Claeson, Phys. Rev. Lett. 84, 5860 (2000)CrossRefADSGoogle Scholar
  22. 22.
    M. Suzuki, T. Watanabe, A. Matsuda, Phys. Rev. Lett. 82, 5361 (1999); M. Suzuki, T. Watanabe, Phys. Rev. Lett. 85, 4787 (2000)CrossRefADSGoogle Scholar
  23. 23.
    M.-H. Bae, J.-H. Park, J.-H. Choi, H.-J. Lee, K.-S. Park, Phys. Rev. B 77, 094519 (2008)CrossRefADSGoogle Scholar
  24. 24.
    X.B. Zhu, Y.F. Wei, S.P. Zhao, G.H. Chen, H.F. Yang, A.Z. Jin, C.Z. Gu, Phys. Rev. B 73, 224501 (2006)CrossRefADSGoogle Scholar
  25. 25.
    X.B. Zhu, S.P. Zhao, Y.F. Wei, H.F. Yang, C.Z. Gu, H.W. Yu, Y.F. Ren, Physica C 460–462, 963 (2007)CrossRefGoogle Scholar
  26. 26.
    S.P. Zhao, X.B. Zhu, Y.F. Wei, e-print arXiv:cond-mat/0703177v2 (2007)Google Scholar
  27. 27.
    Part of the data near and below T c is presented in reference [25]Google Scholar
  28. 28.
    Equation (1) is identical in form to the DOS proposed by Dynes et al. with a change of sign before γ+, which does not affect the DOS value. However, the original Λ parameter is replaced by γ+, which is given by equation (8) below. See R.C. Dynes, V. Narayanamurti, J.P. Garno, Phys. Rev. Lett. 41, 1509 (1978)CrossRefADSGoogle Scholar
  29. 29.
    V.M. Krasnov, A. Yurgens, D. Winkler, P. Delsing, J. Appl. Phys. 89, 5578 (2001); V.M. Krasnov, M. Sandberg, I. Zogaj, Phys. Rev. Lett. 94, 077003 (2005)CrossRefADSGoogle Scholar
  30. 30.
    Clear dip features, resulting from current overshoot above the R N line near 80 mV, were observed in the submicron IJJs from over 20 crystals fabricatedGoogle Scholar
  31. 31.
    Yayu Wang, Lu Li, M.J. Naughton, G.D. Gu, S. Uchida, N.P. Ong, Phys. Rev. Lett. 95, 247002 (2005)Google Scholar
  32. 32.
    L. Ozyuzer, J.F. Zasadzinski, C. Kendziora, K.E. Gray, Phys. Rev. B 61, 3629 (2000)CrossRefADSGoogle Scholar
  33. 33.
    M.R. Norman, A. Kaminski, J. Mesot, J.C. Campuzano, Phys. Rev. B 63, R140508 (2001)CrossRefADSGoogle Scholar
  34. 34.
    R.W. Cohen, B. Abeles, C.R. Fuselier, Phys. Rev. Lett. 23, 377 (1969)CrossRefADSGoogle Scholar
  35. 35.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996)Google Scholar
  36. 36.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, A.E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989)CrossRefADSGoogle Scholar
  37. 37.
    R.H. He, K. Tanaka, S.K. Mo, T. Sasagawa, M. Fujuta, T. Adachi, N. Mannella, K. Yamada, Y. Koike, Z. Hussain, Z.-X. Shen, Nat. Phys. 5, 119 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations