Skip to main content
Log in

Random planar graphs and the London street network

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper we analyse the street network of London both in its primary and dual representation. To understand its properties, we consider three idealised models based on a grid, a static random planar graph and a growing random planar graph. Comparing the models and the street network, we find that the streets of London form a self-organising system whose growth is characterised by a strict interaction between the metrical and informational space. In particular, a principle of least effort appears to create a balance between the physical and the mental effort required to navigate the city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Batty, Cities and Complexity (The MIT Press, Cambridge, Massachussets, 2005)

    Google Scholar 

  2. G.K. Zipf, Human Behaviour and the Principle of Least Effort (Addison-Wesley Press, 1949)

  3. M. Batty, P. Longley, Fractal cities (Academic Press, London and San Diego, 1996)

    Google Scholar 

  4. P. Blanchard, D. Volchenkov, Mathematical Analysis of Urban Spatial Networks (Springer Verlag Berlin, Heidelberg, 2009)

    MATH  Google Scholar 

  5. K.J. Kansky, Structure of transportation networks (University of Chicago, Chicago, 1963)

    Google Scholar 

  6. B. Jiang, C. Claramunt, Environ. Plann. B 31, 151 (2004)

    Article  Google Scholar 

  7. L. Euler, Comm. Acad. Sci. I. Petropol. 8, 128 (1736)

    Google Scholar 

  8. A.P. Masucci, G.J. Rodgers, Phys. A 387, 3781 (2008)

    Article  Google Scholar 

  9. V. Colizza, A. Vespignani, Phys. Rev. Lett. 99, 148701 (2007)

    Article  ADS  Google Scholar 

  10. A. Wilson, J.R. Soc. Interface 5, 865 (2008)

    Article  Google Scholar 

  11. S. Porta, P. Crucitti, V. Latora, Phys. A 369, 853 (2006)

    Article  Google Scholar 

  12. A.L. Barabási, R. Albert, H. Jeong, Phys. A 272, 173 (1999)

    Article  Google Scholar 

  13. R. Diestel, Graph Theory (Springer-Verlag Heidelberg, New York, 2005)

    MATH  Google Scholar 

  14. M. Rosvall, A. Trusina, P. Minnaghen, K. Sneppen, Phys. Rev. Lett. 94, 028701 (2005)

    Article  ADS  Google Scholar 

  15. J. Simmie, Planning London (UCL Press, London, UK, 1994)

    Google Scholar 

  16. M. Barthélemy, A. Flammini, Phys. Rev. Lett. 100, 138702 (2008)

    Article  ADS  Google Scholar 

  17. S. Gerke, C. McDiarmid, Comb. Probab. Comput. 13, 165 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Bruegmann, Sprawl: a compact history (University of Chicago Press, Illinois, 2005)

    Google Scholar 

  19. J. Buhl, J. Gautrais, N. Reeves, R.V. Solé, S. Valverde, P. Kuntz, G. Theraulaz, Eur. Phys. J. B 49, 513 (2006)

    Article  ADS  Google Scholar 

  20. A.P. Masucci, G.J. Rodgers, Adv. in Compl. Syst. 12, 113 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. M.A. Serrano, M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 74, 055101 (2006)

    Article  ADS  Google Scholar 

  22. S. Lämmer, B. Gehlsen, D. Helbing, Phys. A 363, 89 (2006)

    Article  Google Scholar 

  23. L. Figueiredo, L. Amorim, 6th International Space Syntax (Istanbul, Turkey, 2007)

  24. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  25. V. Kalapala, V. Sanwalani, A. Clauset, C. Moore, Phys. Rev. E 73, 026130 (2006)

    Article  ADS  Google Scholar 

  26. M. Boguñá, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 38, 205 (2004)

    Article  ADS  Google Scholar 

  27. L.C. Freeman, Social Networks 1, 215 (1979)

    Article  Google Scholar 

  28. M. Batty, Envir. and Plann. B 6, 191 (2009)

    Article  Google Scholar 

  29. http://www.ordnancesurvey.co.uk

  30. http://igraph.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Masucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masucci, A., Smith, D., Crooks, A. et al. Random planar graphs and the London street network. Eur. Phys. J. B 71, 259–271 (2009). https://doi.org/10.1140/epjb/e2009-00290-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00290-4

PACS

Navigation