The European Physical Journal B

, Volume 69, Issue 2, pp 265–268 | Cite as

Ab initio study on elastic and thermodynamical properties of Ti1-xZrxC

  • S. Ramasubramanian
  • M. Rajagoplan
  • R. Thangavel
  • J. Kumar
Computational Methods


Elastic and Thermodynamical properties of Ti1-xZrxC have been investigated using LAPW + lo within the density-functional theory with the generalized gradient approximation. We have studied the stability of the alloy Ti1-xZrxC as a function of Zr composition in rocksalt (B1) structure by calculating the elastic constants C11, C12 and C44 using the tetragonal and trigonal distortions. Mechanical properties such as Poisson ratio, bulk, shear and Young’s modulii of Ti1-xZrxC are calculated. The Debye temperature and hardness are also computed for the first time to our knowledge for Ti1-xZrxC in various compositions.


71.20.-b Electron density of states and band structure of crystalline solids 71.15.Mb Density functional theory, local density approximation, gradient and other corrections 71.20.Lp Intermetallic compounds Elastic moduli 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L.E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971)Google Scholar
  2. E.K. Storms, The Refractory Carbides (Academic Press, New York, 1967)Google Scholar
  3. H. Holleck, J. Vac. Sci. Tech. A 4, 2661 (1986)Google Scholar
  4. W. Weber, Phys. Rev. B 8, 5082 (1973)Google Scholar
  5. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), 2001, ISBN 3-501031-1-2Google Scholar
  6. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 386 (1996)Google Scholar
  7. N. Zotov, A. Ludwig, Intermetallics 16, 113 (2008)Google Scholar
  8. F. Birch, Phys. Rev. 71, 809 (1947)Google Scholar
  9. S.P. Dodd, M. Cankurtaran, B. James, J. Mat. Sci. 38, 107 (2003)Google Scholar
  10. Kuiying Chen, L.R. Zhao, J.S. Tse, J. Appl. Phys. 93, 2414 (2003)Google Scholar
  11. M.J. Mehl, B.M. Klein, K. Papaconstatopolous, Intermetallic Compounds (John Wiley & Sons, New York, 1994), Vol. IGoogle Scholar
  12. J. Wang, S. Yip, Phys. Rev. Lett. 71, 4182 (1993)Google Scholar
  13. B. Mayer, H. Anton, E. Botl, M. Methfessel, J. Sficht, P.C. Schmidt, Intermetallics 11, 23 (2003)Google Scholar
  14. L. Johnston, G. Keeler, R. Rollins, S. Spicklemire, Solid State Physics Stimulations, The Consortium for upper level physics software (John Wiley, New York, 1996)Google Scholar
  15. A. Simunek, J. Vackar, Phys. Rev. Lett. 96, 085501 (2006)Google Scholar
  16. A. Simunek, Phys. Rev. B 75, 172108 (2007)Google Scholar
  17. E.I. Isaev, R. Ahuja, S.I. Simak, A.I. Lichtenstein, Y.K. Vekilov, B. Johansson, I.A. Abrikosov, Phys. Rev. B 72, 064515 (2005)Google Scholar
  18. V.A. Gubanov, A.L. Ivanovskii, V.P. Zhukov, Electronic Structure of Refractory Carbides and Nitrides (University Press, Cambridge, 1994)Google Scholar
  19. P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79, 085104 (2009)Google Scholar
  20. D. Cheng, S. Wang, H. Ye, J. Alloys Com. 377, 221 (2004)Google Scholar
  21. W. Lengauer, K. Dreyer, J. Alloys Com. 217, 137 (1995)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Ramasubramanian
    • 1
  • M. Rajagoplan
    • 1
  • R. Thangavel
    • 1
  • J. Kumar
    • 1
  1. 1.Crystal Growth Centre, Anna University ChennaiChennaiIndia

Personalised recommendations