Skip to main content
Log in

Critical layer thickness of GaIn(N)As(Sb) QWs on GaAs and InP substrates for (001) and (111) orientations

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The aim of this work is to examine the effect of dilute nitride and/or antimonite on the critical layer thickness of GaInAs quantum wells on GaAs and InP substrates by means of Matthews and Blakeslee force model. The study provides a comparison of the critical layer thickness of the related GaIn(N)As(Sb) QWs in (001) and (111) orientation. Our calculations indicate the importance of antimonite and the proper usage of it with dilute nitrides in order to tailor the active layer thickness and emission wavelength of quantum well laser devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • J.H. Van der Merve, J. Appl. Phys. 34, 123 (1962)

    Google Scholar 

  • R.P. Sarzala, W. Nakwaski, Optical and Quantum Electronics 38, 293 (2006)

    Google Scholar 

  • K.D. Choquettes, K.M. Geib, C.H. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes, R. Hull, IEEE J. Sel. Top. Quantum Electron.3, 916 (1997)

    Google Scholar 

  • M. Kondow, T. Kitatani, Semicond. Sci. Technol. 17, 746 (2002)

    Google Scholar 

  • A.W. Jackson, R.L. Naone, M.J. Dalberth, J.M. Smith, K.J. Malone, D.W. Kisker, J.F. Klem, K.D. Choquette, D.K. Serkland, K.M. Geib, Electron. Lett. 37, 355 (2001)

    Google Scholar 

  • G. Purvis, III-Vs Review 17, 43 (2004)

    Google Scholar 

  • X. Yang, M.J. Jurkovic, J.B. Heroux, W.I. Wang, Appl. Phys. Lett. 75 178 (1999)

    Google Scholar 

  • H. Shimizu, K. Kumada, S. Uchiyama, A. Kasukawa, IEEE J. Sel. Top. Quantum Electron. 7, 355 (2001)

    Google Scholar 

  • V. Gambin, W. Ha, M. Wistey, H. Yuen, S.R. Bank, S.M. Kim, J.S. Harris Jr., IEEE J. Sel. Top. Quantum Electron. 8, 795 (2002)

    Google Scholar 

  • M.R. Gokhale, J. Wei, H. Wang, S.R. Forrest, Appl. Phys. Lett. 74, 1287 (1999)

    Google Scholar 

  • W. Zaets, K. Ando, IEEE Photonics Technol. Lett. 11 1012 (1999)

    Google Scholar 

  • Takenaka, Proc. 11th Int. Conf. on Indium Phosphide and Related Matrials (Davos, Switzerland, 1999), p. 289

  • H. Carrere, X. Marie, J. Barrau, T. Amand, S.B. Bouzid, V. Sallet, J.C. Harmand, IEE Proc.-Optoelectron 151, 402 (2004)

    Google Scholar 

  • A. Ubukata, J. Dong, K. Matsumoto, Y. Ishihara, Jpn. J. Appl. Phys. 39, 5962 (2000)

    Google Scholar 

  • D.L. Smith, C. Mailhiot, J. Appl. Phys. 63, 2717 (1988)

    Google Scholar 

  • T. Anan, K. Nishi, S. Sugou, Appl. Phys. Lett. 60, 3159 (1992)

    Google Scholar 

  • S. Blanc, A. Arnoult, H. Carrere, C. Fontaine, Solid-State Electronics 47, 395 (2003)

    Google Scholar 

  • B.V. Volovik, A.R. Kovsh, W. Passenberg, H. Kuenzel, N. Grote, N.A. Cherkashin, Y.G. Musikhin, N.N. Ledentsov, D. Bimberg, V.M. Ustinov, Semicond. Sci. Technol. 16, 186 (2001)

    Google Scholar 

  • S. Giannattasio, R.J. Senkader, R.J. Falster, P.R. Wilshaw, Z. Phys. B, Condens. Matter 340, 996 (2003)

    Google Scholar 

  • K. Momose, H. Yonezu, Y. Fujimoto, K. Ojima, Y. Furukawa, A. Utsumi, K. Aiki, Jpn. J. Appl. Phys. 41, 7301 (2002)

    Google Scholar 

  • S.B. Zhang, A. Zunger, Appl. Phys. Lett. 71, 677 (1997)

    Google Scholar 

  • S. Blanc, A. Arnoult, H. Carrere, C. Fontaine, Physica E 17, 252 (2003)

    Google Scholar 

  • M. Sugawara, Appl. Phys. Lett. 60, 1842 (1992)

    Google Scholar 

  • G. Jones, E.P. O’reilly, IEEE J. Quantum Electron. 29, 1344 (1993)

    Google Scholar 

  • J.W. Matthews, A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974)

    Google Scholar 

  • J.Y. Tsao, B.W. Dodson, S.T. Picraux, D.M. Cornelison, Phys. Rev. Lett. 59, 2455 (1987)

    Google Scholar 

  • R. People, J.C. Bean, Appl. Phys. Lett. 47, 322 (1985)

    Google Scholar 

  • M.J. Ekenstedt, T.G. Andersson, S.M. Wang, Phys. Rev. B 48, 5289 (1993)

    Google Scholar 

  • S.M. Wang, T.G. Andersson, K.D. Vladimir, J.Y. Yao, Superlattices Microstruct. 9, 123 (1991)

  • I.J. Fritz, Appl. Phys. Lett. 51, 1080 (1987)

    Google Scholar 

  • V. Grillo, M. Albrecht, T. Remmele, H.P. Strunk, A. Yu, Egorov, H. Riechert, J. Appl. Phys. 90, 3792 (2001)

  • E.A. Fitzgerald, Mater. Sci. Rep. 7, 87 (1991)

    Google Scholar 

  • L. Goddard, Ph.D. thesis, Stanford Universty, 2005

  • D.S. Jiang, Y.H. Qu, H.Q. Ni, D.H. Wu, Y.Q. Xu, Z.C. Niu, J. Cryst. Growth 288, 12 (2006)

    Google Scholar 

  • L.W. Sung, H.H. Lin, Appl. Phys. Lett. 83, 1107 (2003)

    Google Scholar 

  • H.Q. Ni, Z.C. Niu, X.H. Xu, W. Zhang, X. Wei, L.F. Bian, Z.H. He, Q. Han, R.H. Wu, Appl. Phys. Lett. 84, 5100 (2004)

    Google Scholar 

  • T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, F. Koyama, J. Appl. Phys. 96, 44 (2004)

    Google Scholar 

  • P.J.A. Thijs, L.F. Tiemeijer, K.I. Kuindersma, J.J.M. Binsma, T. Van Dongem, IEEE J. Quantum Electron. 27, 1426 (1991)

    Google Scholar 

  • P.J.A. Thijs, L.F. Tiemeijer, K.I. Kuindersma, J.J.M. Binsma, T. Van Dongem, IEEE J. Quantum Electron. 30, 477 (1994)

    Google Scholar 

  • E.P. O’Reilly, G. Jones, A. Ghiti, A.R. Adams, Electron. Lett. 27, 1417 (1991)

    Google Scholar 

  • V.M. Ustinov, A.E. Zhukov, Semin. Sci. Technol. 15, R41 (2000)

  • T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome, A. Gomyo, Electron. Lett. 34, 2127 (1998)

  • J.E. Cunniingham, M. Dinu, J. Shah, F. Quochi, D. Kilper, W.Y. Jan, J. Vac. Sci. Technol. B 19, 1948 (2001)

  • Y. Tian, H. Wang, Microelectronics Journal 37, 38 (2006)

    Google Scholar 

  • J.C. Harmand, A. Caliman, E.V.K. Rao, L. Lergeau, J. Ramos, R. Teissier, L. Travers, G. Ungaro, B. Theys, I.F.L. Dias, Semicond. Sci. Technol. 17, 778 (2002)

    Google Scholar 

  • A.J. Ptak, S.W. Johnston, S. Kurtz, D.J. Friedman, W.K. Metzger, J. Cryst. Growth 251, 392 (2003)

    Google Scholar 

  • S.R. Kurtz, A.A. Allerman, C.H. Seager, R.M. Sieg, E.D. Jones, Appl. Phys. Lett. 77, 400 (2000)

    Google Scholar 

  • M.A. Wistey, S.R. Bank, H.B. Yuen, H.P. Bae, J.S. Harris Jr., J. Cryst. Growth 278, 229 (2005)

  • H.B. Yuen, M.A. Wistey, S.R. Bank, H.P. Bae, J.S. Harris Jr., J. Vac. Sci. Technol. B 23, 1328 (2005)

    Google Scholar 

  • T.G. Andersson, Z.G. Chen, V.D. Kulakovskii, A. Uddin, J.T. Vallin, Appl. Phys. Lett. 51, 752 (1987)

    Google Scholar 

  • H. Temkin, D.G. Gershoni, G. Chu, J.M. Vandenberg, R.A. Hamm, M.B. Panish, Appl. Phys. Lett. 55, 1668 (1989)

    Google Scholar 

  • M. Peter, D. Serries, N. Herres, F. Fuchs, R. Klefer, K. Winkler, K.H. Bachem, J. Wagner, Int. Phys. Conf. Ser. No. 156, (1999), Chapter 2

  • K. Uesugi, N. Morooka, I. Suemune, J. Cryst. Growth 201, 202, 355 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Köksal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köksal, K., Gönül, B. & Oduncuoğlu, M. Critical layer thickness of GaIn(N)As(Sb) QWs on GaAs and InP substrates for (001) and (111) orientations. Eur. Phys. J. B 69, 211–218 (2009). https://doi.org/10.1140/epjb/e2009-00151-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00151-2

PACS

Navigation