The European Physical Journal B

, Volume 68, Issue 2, pp 161–181 | Cite as

Composite boson many-body theory for Frenkel excitons

Solid State and Materials

Abstract

We present a many-body theory for Frenkel excitons which takes into account their composite nature exactly. Our approach is based on four commutators similar to the ones we previously proposed for Wannier excitons. They allow us to calculate any physical quantity dealing with N excitons in terms of “Pauli scatterings” for carrier exchange in the absence of carrier interaction and “interaction scatterings” for carrier interactions in the absence of carrier exchange. We show that Frenkel excitons have a novel “transfer assisted exchange scattering”, specific to these excitons. It comes from indirect Coulomb processes between localized atomic states. These indirect processes, commonly called “electron-hole exchange” in the case of Wannier excitons and most often neglected, are crucial for Frenkel excitons, as they are the only ones responsible for the excitation transfer. We also show that in spite of the fact that Frenkel excitons are made of electrons and holes on the same atomic site, so that we could naively see them as elementary particles, they definitely are composite objects, their composite nature appearing through various properties, not always easy to guess. The present many-body theory for Frenkel excitons is thus going to appear as highly valuable to securely tackle their many-body physics, as in the case of nonlinear optical effects in organic semiconductors.

PACS

71.35.-y Excitons and related phenomena 71.35.Aa Frenkel excitons and self-trapped excitons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.H. Wannier, Phys. Rev. 52, 191 (1937)Google Scholar
  2. J. Frenkel, Phys. Rev. 37, 17 (1931)Google Scholar
  3. For a short review, see M. Combescot, O. Betbeder-Matibet, Solid State Comm. 134, 11 (2005)Google Scholar
  4. For a longer review, see M. Combescot, O. Betbeder-Matibet, F. Dubin, Physics Reports 463, 215 (2008)Google Scholar
  5. M. Combescot, O. Betbeder-Matibet, Eur. Phys. J. B 55, 63 (2007)Google Scholar
  6. M. Combescot, O. Betbeder-Matibet, Phys. Rev. B 74, 125316 (2006)Google Scholar
  7. M. Combescot, O. Betbeder-Matibet, e-print arXiv:cond-mat/0802.0435 Google Scholar
  8. M. Combescot, O. Betbeder-Matibet, Solid Stat. Com. 132, 129 (2004)Google Scholar
  9. M. Combescot, O. Betbeder-Matibet, V. Voliotis, Europhys. Lett. 74, 868 (2006)Google Scholar
  10. M. Combescot, O. Betbeder-Matibet, R. Combescot, Phys. Rev. Lett. 99, 176403 (2007)Google Scholar
  11. M. Combescot, W.V. Pogosov, Phys. Rev. B 77, 085206 (2008)Google Scholar
  12. M. Combescot, C. Tanguy, Europhys. Lett. 55, 390 (2001)Google Scholar
  13. M. Combescot, O. Betbeder-Matibet, Europhys. Lett. 58, 87 (2002)Google Scholar
  14. M. Combescot, O. Betbeder-Matibet, Eur. Phys. J. B 27, 505 (2002)Google Scholar
  15. M. Combescot, X. Leyronas, C. Tanguy, Eur. Phys. J. B 31, 17 (2003)Google Scholar
  16. M. Combescot, O. Betbeder-Matibet, Phys. Rev. B 72, 193105 (2005)Google Scholar
  17. M. Combescot, M.A. Dupertuis, Phys. Rev. B 78, 235303 (2008)Google Scholar
  18. M. Combescot, M.A. Dupertuis, O. Betbeder-Matibet, Europhys. Lett. 75, 17001 (2007)Google Scholar
  19. O. Betbeder-Matibet, M. Combescot, Eur. Phys. J. B 31, 517 (2003)Google Scholar
  20. M. Combescot, O. Betbeder-Matibet, R. Combescot, Phys. Rev. B 75, 114305 (2007)Google Scholar
  21. V.M. Agranovich, M.D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North Holland, Amsterdam, 1982)Google Scholar
  22. M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, V.M. Agranovich, K. Leo, Chem. Phys. 258, 73 (2000)Google Scholar
  23. V.M. Agranovich, B.S. Toshich, Sov. Phys. JETP 26, 104 (1968)Google Scholar
  24. A.S. Davydov, Theory of Molecular Excitons (Plenum Press, New York, 1971)Google Scholar
  25. V. Chernyak, S. Mukamel, J. Opt. Soc. Am. B 13, 1302 (1996)Google Scholar
  26. S. Mukamel, Principles of Nonlinear Optics and Spectroscopy (Oxford University Press, 1995)Google Scholar
  27. V. Chernyak, S. Yokojima, T. Meier, S. Mukamel, Phys. Rev. B 58, 4496 (1998)Google Scholar
  28. V.M. Axt, S. Mukamel, Rev. Mod. Phys. 70, 145 (1998)Google Scholar
  29. M. Combescot, O. Betbeder-Matibet, Phys. Rev. B 78, 125106 (2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRSParisFrance
  2. 2.Institute for Theoretical and Applied Electrodynamics, Russian Academy of SciencesMoscowRussia

Personalised recommendations