Advertisement

The European Physical Journal B

, Volume 67, Issue 4, pp 507–512 | Cite as

Electronic structure of defects in a boron nitride monolayer

  • S. Azevedo
  • J. R. Kaschny
  • C. M.C. de Castilho
  • F. de Brito Mota
Solid State and Materials

Abstract

We investigate, using first-principles calculations, the electronic structure of substitutional and vacancy defects in a boron nitride monolayer. We found that the incorporation of a substitutional carbon atom induces appreciable modification on the electronic properties, when compared to a non-defective boron nitride sheet. The incorporation of substitutional carbon impurity also induces a significant reduction of the work function. In addition, we found that defects introduce electronic states in the energy-gap region, with strong impact on the optical properties of the material. The calculation results indicate that spin polarization is obtained when substitutional impurities or vacancy defects are introduced in the structure

PACS

71.20.Tx Fullerenes and related materials; intercalation compounds 71.15.Mb Density functional theory, local density approximation, gradient and other corrections 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Nature 354, 56 (1991)Google Scholar
  2. S. Iijima, T. Ichihashi, Y. Bando, Nature 356, 776 (1992)Google Scholar
  3. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (London: Imperial College Press, 1998)Google Scholar
  4. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 05545 (2007)Google Scholar
  5. A.K. Geim, K.S. Novoselov, Nature Materials 6, 183 (2007)Google Scholar
  6. L. Vitali, M. Burghard, P. Wahl, M.A. Schneider, K. Kern, Phys. Rev. Lett. 96, 086804 (2006)Google Scholar
  7. P.M. Ajayan, V. Ravikumar, J.C. Charlier, Phys. Rev. Lett. 81, 1437 (1998)Google Scholar
  8. L.C. Venema, J.W. Janssen, M.R. Buitelaar, J.W. Wildr, S.G. Lemay, L.P. Kouwenhoven, C. Dekker, Phys. Rev. B 62, 5238 (2000)Google Scholar
  9. M. Menon, Phys. Rev. Lett. 79, 4453 (1997)Google Scholar
  10. H.J. Choi, J. Ihm, S. Louie, M. Cohen, Phys. Rev. Lett. 84, 2917 (2000)Google Scholar
  11. L. Wirtz, A. Rubini, A. Rubio, Phys. Rev. Lett. 96, 126104 (2006)Google Scholar
  12. C.H. Park, C.D. Sparatu, S.G. Louie, Phys. Rev. Lett. 96, 126105 (2006)Google Scholar
  13. R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Phys. Rev. Lett. 95, 127601 (2005)Google Scholar
  14. A. Krasheninnikov, P. Lehtinen, A. Foster, R. Nieminen, Chem. Phys. Lett. 418, 132 (2006)Google Scholar
  15. I. Jimènez, A. Jankowski, L.J. Terminello, J.A. Carlisle, D.G.J. Sutherland, G.L. Doll, J.V. Mantese, V.M. Tong, D.K. Shuh, F.J. Himpsel, Appl. Phys. Lett. 68, 2816 (1996)Google Scholar
  16. I. Jimènez, A. Jankowski, L.J. Terminello, D.G.J. Sutherland, J.A. Carlisle, G.L. Doll, V.M. Tong, D.K. Shuh, F.J. Himpsel, Phys. Rev. B 55, 12025 (1997)Google Scholar
  17. W. Orellana, H. Chacham, Phys. Rev. B 63, 125205 (2001)Google Scholar
  18. A.J. Lu, B.C. Pan, Phys. Rev. Lett. 92, 105504 (2004)Google Scholar
  19. A. Zobelli, C.P. Ewels, A. Gloter, G. Seifert, Phys. Rev. B 75, 094104 (2007)Google Scholar
  20. S. Azevedo, J.R. Kaschny, C.M. Castilho, F.B Mota, Nanotechnoly 18, 495707 (2007)Google Scholar
  21. J. Cumings, A. Zettl, Solid State Commun. 129, 661 (2004)Google Scholar
  22. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)Google Scholar
  23. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)Google Scholar
  24. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)Google Scholar
  25. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)Google Scholar
  26. J.P. Perdew, K. Burke, M. Enrzerhof, Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
  27. R. Hoffmann, J. Chem. Phys. 39, 1397 (1963)Google Scholar
  28. A. Zunger, J. Phys. C: Solid State Phys. 7, 76 (1972)Google Scholar
  29. T.M. Schmidt, R.J. Baierle, P. Piquini, A. Fazzio, Phys. Rev. B 67, 113407 (2003)Google Scholar
  30. S. Azevedo, M.S. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004)Google Scholar
  31. S. Azevedo, R. de Paiva, J.R. Kaschny, J. Phys. C: Cond. Matt. 18, 10871 (2006)Google Scholar
  32. R.J. Baierle, S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B 64, 085413 (2001)Google Scholar
  33. R.-F. Liu, C. Cheng, Phys. Rev. B 76, 2007 (2007)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Azevedo
    • 1
  • J. R. Kaschny
    • 2
  • C. M.C. de Castilho
    • 3
  • F. de Brito Mota
    • 3
  1. 1.Departamento de FísicaUniversidade Estadual de Feira de Santana km-03Feira de SantanaBrazil
  2. 2.Coordenação de Engenharia Elétrica, CEFET-BA, Av. Amazonas 3150, 45030-220Vitória da ConquistaBrazil
  3. 3.Grupo de Física de Superfícies e Materiais, Instituto de Física, Universidade Federal da BahiaSalvadorBrazil

Personalised recommendations