Skip to main content
Log in

Nonlinear voter models: the transition from invasion to coexistence

  • Interdisciplinary Physics
  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In nonlinear voter models the transitions between two states depend in a nonlinear manner on the frequencies of these states in the neighborhood. We investigate the role of these nonlinearities on the global outcome of the dynamics for a homogeneous network where each node is connected to m = 4 neighbors. The paper unfolds in two directions. We first develop a general stochastic framework for frequency dependent processes from which we derive the macroscopic dynamics for key variables, such as global frequencies and correlations. Explicit expressions for both the mean-field limit and the pair approximation are obtained. We then apply these equations to determine a phase diagram in the parameter space that distinguishes between different dynamic regimes. The pair approximation allows us to identify three regimes for nonlinear voter models: (i) complete invasion; (ii) random coexistence; and – most interestingly – (iii) correlated coexistence. These findings are contrasted with predictions from the mean-field phase diagram and are confirmed by extensive computer simulations of the microscopic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. Abrams, S. Strogatz, Nature 424, 900 (2003)

    Google Scholar 

  • P.S. Albin, The Analysis of Complex Socioeconomic Systems (Lexington Books, London, 1975)

  • J. Antonovics, P. Kareiva, Philos. Trans. R. Soc. London B 319, 601 (1988)

    Google Scholar 

  • L. Behera, F. Schweitzer, Int. J. Mod. Phys. C 14, 1331 (2003)

    Google Scholar 

  • E. Ben-Naim, L. Frachebourg, P.L. Krapivsky, Phys. Rev. E 53, 3078 (1996)

    Google Scholar 

  • E. Ben-Naim, P. Krapivsky, S. Redner, Physica D: Nonlinear Phenomena 183, 190 (2003)

    Google Scholar 

  • A.T. Bernardes, D. Stauffer, J. Kertesz, Eur. Phys. J. B 25, 123 (2002)

    Google Scholar 

  • C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. (2008) http://arxiv.org/abs/0710.3256

  • C. Castellano, V. Loreto, A. Barrat, F. Cecconi, D. Parisi, Phys. Rev. E 71, 066107 (2005)

    Google Scholar 

  • C. Castellano, D. Vilone, A. Vespignani, Europhys. Lett. 63, 153 (2003)

    Google Scholar 

  • X. Castello, V. Eguíluz, M. San Miguel, New J. Phys. 8, 308 (2006)

  • R.N. Costa Filho, M.P. Almeida, J.S. Andrade, J.E. Moreira, Phys. Rev. E 60, 1067 (1999)

    Google Scholar 

  • J.T. Cox, D. Griffeath, Annals of Probability 14, 347 (1986)

    Google Scholar 

  • L. Dall’Asta, C. Castellano, Europhys. Lett. 77, 60005 (2007)

    Google Scholar 

  • M. De Oliveira, J. Mendes, M. Santos, J. Phys. A 26, 2317 (1993)

    Google Scholar 

  • I. Dornic, H. Chaté, J. Chave, H. Hinrichsen, Phys. Rev. Lett. 87, 045701 (2001a)

  • J. Drouffe, C. Godrèche, J. Phys. A: Mathematical and General 32, 249 (1999)

    Google Scholar 

  • R. Durrett, S. Levin, Theoretical Population Biology 46, 363 (1994)

    Google Scholar 

  • L. Frachebourg, P. Krapivsky, Phys. Rev. E 53, R3009 (1996)

  • R.A. Holley, T.M. Liggett, Annals of Probability 3, 643 (1975)

    Google Scholar 

  • J. Hołyst, K. Kacperski, F. Schweitzer, Physica A 285, 199 (2000)

    Google Scholar 

  • T.H. Keitt, M.A. Lewis, R.D. Holt, The American Naturalist 157, 203 (2001)

    Google Scholar 

  • B.E. Kendall, O.N. Bjørnstad, J. Bascompte, T.H. Keitt, W.F. Fagan, The American Naturalist 155, 628 (2000)

    Google Scholar 

  • M. Kimura, G.H. Weiss, Genetics 49, 313 (1964)

  • P. Krapivsky, Phys. Rev. A 45, 1067 (1992)

    Google Scholar 

  • P.L. Krapivsky, S. Redner, Phys. Rev. Lett. 90, 238701 (2003)

    Google Scholar 

  • T.M. Liggett, Annals of Probability 22, 764 (1994)

    Google Scholar 

  • T.M. Liggett, Stochastic Interacting Systems, Grundlehren der mathematischen Wissenschaften (Springer, Berlin, 1999), Vol. 342

  • J. Molofsky, R. Durrett, J. Dushoff, D. Griffeath, S. Levin, Theoretical Population Biology 55, 270 (1999)

    Google Scholar 

  • C. Moore, J. Stat. Phys. 88, 795 (1997)

    Google Scholar 

  • H. Mühlenbein, R. Höns, Advances in Complex Systems 5, 301 (2002)

    Google Scholar 

  • M. Nakamaru, H. Matsuda, Y. Iwasa, J. Theor. Biology 184, 65 (1997)

    Google Scholar 

  • C. Neuhauser, Theoretical Population Biology 56, 203 (1999)

    Google Scholar 

  • A. Nowak, M. Kus, J. Urbaniak, T. Zarycki, Physica A 287, 613 (2000)

    Google Scholar 

  • N.A. Oomes, D. Griffeath, C. Moore, New Constructions in cellular automata (Oxford Universitiy Press, 2002), pp. 207–230

  • S.W. Pacala, J.A. Silander, Jr., The American Naturalist 125, 385 (1985)

    Google Scholar 

  • S. Redner, A guide to first-passage processes (Cambridge University Press, Cambridge, 2001)

  • F.J. Rohlf, G.D. Schnell, The American Naturalist 105, 295 (1971)

    Google Scholar 

  • T. Schelling, Am. Econ. Rev. 59, 488 (1969)

    Google Scholar 

  • F. Schweitzer, Brownian Agents and Active Particles. Collective Dynamics in the Natural and Social Sciences, Springer Series in Synergetics (Springer, Berlin, 2003)

  • F. Schweitzer, L. Behera, H. Mühlenbein, Advances in Complex Systems 5, 269 (2002)

    Google Scholar 

  • F. Schweitzer, J. Hołyst, Eur. Phys. J. B 15, 723 (2000)

    Google Scholar 

  • F. Slanina, H. Lavicka, Eur. Phys. J. B 35, 279 (2003)

    Google Scholar 

  • V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005)

    Google Scholar 

  • H.-U. Stark, C.J. Tessone, F. Schweitzer, Phys. Rev. Lett. 101, 018701 (2008a)

  • H.-U. Stark, C.J. Tessone, F. Schweitzer, Advances in Complex Systems 11, 87 (2008b)

  • K. Suchecki, V.M. Eguíluz, M. San Miguel, Europhys. Lett. 69, 228 (2005a)

  • K. Suchecki, V.M. Eguíluz, M. San Miguel, Phys. Rev. E 72, 036132 (2005b)

    Google Scholar 

  • G. Szabó, T. Antal, P. Szabó, M. Droz, Phys. Rev. E 62, 1095 (2000)

    Google Scholar 

  • F. Vazquez, V.M. Eguiluz, M.S. Miguel, Phys. Rev. Lett. 100, 108702 (2008)

    Google Scholar 

  • F. Vazquez, C. Lopez, Phys. Rev. E 78, 061127 (2008)

    Google Scholar 

  • W. Weidlich, J. Mathematical Sociology 18, 267 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schweitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweitzer, F., Behera, L. Nonlinear voter models: the transition from invasion to coexistence. Eur. Phys. J. B 67, 301–318 (2009). https://doi.org/10.1140/epjb/e2009-00001-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00001-3

PACS

Navigation