Advertisement

The European Physical Journal B

, Volume 67, Issue 1, pp 7–13 | Cite as

Universal diffusive decay of correlations in gapped one-dimensional systems

  • Á. Rapp
  • G. Zaránd
Solid State and Materials

Abstract

We apply a semiclassical approach to express finite temperature dynamical correlation functions of gapped spin models analytically. We show that the approach of [Á. Rapp, G. Zaránd, Phys. Rev. B 74, 014433 (2006)] can also be used for the S = 1 antiferromagnetic Heisenberg chain, whose lineshape can be measured experimentally. We generalize our calculations to O(N) quantum spin models and the sine-Gordon model in one dimension, and show that in all these models, the finite temperature decay of certain correlation functions is characterized by the same universal semiclassical relaxation function.

PACS

75.10.Pq Spin chain models 05.30.-d Quantum statistical mechanics 05.50.+q Lattice theory and statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bethe, Z. Phys. 71, 205 (1931)Google Scholar
  2. A.F.M. Haldane, Phys. Lett. A 93, 464 (1983)Google Scholar
  3. I. Affleck, J. Phys.: Condens. Matter 1, 3047 (1989)Google Scholar
  4. J. Deisz, M. Jarrell, D.L. Cox, Phys. Rev. B 48, 10227 (1993)Google Scholar
  5. R.M. Morra, W.J.L. Buyers, R.L. Armstrong, K. Hirakawa, Phys. Rev. B 38, 543 (1988)Google Scholar
  6. H. Mutka, J.L. Soubeyroux, G. Bourleaux, P. Colombet, Phys. Rev. B 39, 4820 (1989)Google Scholar
  7. H. Mutka, C. Payen, P. Molinié, J.L. Soubeyroux, P. Colombet, A.D. Taylor, Phys. Rev. Lett. 67, 497 (1991)Google Scholar
  8. L.P. Regnault, I. Zaliznyak, J.P. Renard, C. Vettier, Phys. Rev. B 50, 9174 (1994)Google Scholar
  9. G. Xu, J.F. DiTusa, T. Ito, K. Oka, H. Takagi, C. Broholm, G. Aeppli, Phys. Rev. B 54, R6827 (1996)Google Scholar
  10. M. Takigawa, T. Asano, Y. Ajiro, M. Mekata, Y.J. Uemura, Phys. Rev. Lett. 76, 2173 (1996)Google Scholar
  11. A.V. Sologubenko, S.M. Kazakov, H.H. Ott, T. Asano, Y. Ajino, Phys. Rev. B 68, 094432 (2003)Google Scholar
  12. G. Chaboussant, M.-H. Julien, Y. Fagot-Revurat, L.P. Levy, C. Berthier, M. Horvatic, O. Piovesana, Phys. Rev. Lett. 79, 925 (1997)Google Scholar
  13. F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory (World Scientific, 1992)Google Scholar
  14. H. Babujian, A. Fring, M. Karowski, A. Zapletal, Nuclear Physics B 538, 535 (1999); H. Babujian, M. Karowski, Nuclear Physics B 620, 407 (2002)Google Scholar
  15. A. LeClair, G. Mussardo, Nuclear Physics B 552, 624 (1999)Google Scholar
  16. R.M. Konik, Phys. Rev. B 68, 104435 (2003)Google Scholar
  17. B.L. Altshuler, R.M. Konik, A.M. Tsvelik, Nucl. Phys. B 739, 311 (2006)Google Scholar
  18. F.H.L. Essler, R.M. Konik, preprint: arXiv:0711.2524 (2007)Google Scholar
  19. S. Sachdev, A.P. Young, Phys. Rev. Lett. 78, 2220 (1997)Google Scholar
  20. Ákos Rapp, Gergely Zaránd, Phys. Rev. B 74, 014433 (2006), [arXiv:cond-mat/0507390] Google Scholar
  21. K. Damle, S. Sachdev, Phys. Rev. Lett. 95, 187201 (2005), [arXiv:cond-mat/0507380] Google Scholar
  22. K. Damle, S. Sachdev, Phys. Rev. B 57, 8307 (1998)Google Scholar
  23. A.B. Zamolodchikov, A.B. Zamolodchikov, Nuclear Physics B 133, 525 (1978)Google Scholar
  24. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, 1999)Google Scholar
  25. Here we count trajectories coming from the left and right with opposite signs when we compute k and nGoogle Scholar
  26. A.B. Zamolodchikov, Comm. Math. Phys. 55, 183 (1977)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentInstitute of Physics, Budapest University of Technology and EconomyBudapestHungary
  2. 2.Institut für Theoretische Physik, Universität zu KölnKölnGermany
  3. 3.Institut für Theoretische Festkörper Physik, Universität KarlsruheKarlsruheGermany

Personalised recommendations