Advertisement

The European Physical Journal B

, Volume 66, Issue 4, pp 483–487 | Cite as

Electronic structure, ferroelectricity and optical properties of CaBi2Ta2O9

  • B. Xu
  • X. Li
  • J. Sun
  • L. Yi
Solid State and Materials

Abstract

Using first-principles calculations based on density-functional theory in its local-density approximation, we investigated the Electronic structure, ferroelectricity and optical properties of CaBi2Ta2O9 (CBT) for the first time. It is found that CBT compound has an indirect band gap of 3.114 eV and the O 2s and 2p states are strongly hybridized with the 6s states of Bi which belong to the (Bi2O2)2+ planes. The quite strong Ta–O and Bi–O hybridization is the primary source for ferroelectricity. Our results imply that the interaction between Bi and O is highly covalent. The anisotropy occurs mainly above 4 eV in the optical properties. The different optical properties have been discussed.

PACS

71.20.-b Electron density of states and band structure of crystalline solids 78.20.-e Optical properties of bulk materials and thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Aurivillius, Arkiv for Kemi 1, 463 (1949)Google Scholar
  2. G.A. Smolenskii, A.I. Agranovskaya, Sov. Phys. Solid State 1, 400 (1959); G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, Sov. Phys. Solid State 3, 651 (1961)Google Scholar
  3. E.C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962)Google Scholar
  4. J.F. Scott, Phys. World 8, 46 (1995); J.F. Scott, F.M. Ross, C.A. Paz de Araujo, M. Huffman, MRS Bull. 21, 33 (1996)Google Scholar
  5. T. Atsuki, N. Soyama, T. Yonezawa, K. Ogi, Jpn J. Appl. Phys. Part 1 34, 5096 (1995)Google Scholar
  6. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature (London) 401, 682 (1999)Google Scholar
  7. U. Chon, H.M. Jang, M.G. Kim, C.H. Chang, Phys. Rew. Lett. 89, 087601 (2002)Google Scholar
  8. A. Garg, Z.H. Barber, M. Dawber, J.F. Scott, A. Snedden, P. Lightfoot, Appl. Phys. Lett. 83, 2414 (2003)Google Scholar
  9. J.F. Scott, C.A. Paz de Araujo, Science 246, 1400 (1989)Google Scholar
  10. J.T. Evans, Womack R IEEE, Solid-State Circuits. 23, 1171 (1988)Google Scholar
  11. A.D. Rae, J.G. Thompson, R.L. Withers, Acta Crystallogr. B 48, 418 (1992)Google Scholar
  12. K. Kato, C. Zheng, J.M. Finder, S.K. Dey, Y. Torii, J. Am. Ceram. Soc. 81, 1869 (1998)Google Scholar
  13. S.K. Dey, R. Zuleeg, Ferroelectrics 108, 37 (1990)Google Scholar
  14. S.K. Dey, Mater. Res. Soc. Bull. 21, 44 (1996)Google Scholar
  15. R. Barz, F. Amrhein, Y. Shin, S.K. Dey, Integr. Ferroelectr. 22, 65 (1998)Google Scholar
  16. P.K. Larsen, G.J.M. Dormans, D. Taylor, P.J. Van Veldhoven, J. Appl. Phys. 76, 2405 (1994)Google Scholar
  17. M.G. Stachiotti, C.O. Rodriguez, C. Ambrosch-Draxl, N.E. Christensen, Phys. Rev. B 61, 14434 (2000)Google Scholar
  18. Y. Shimakawa, H. Imai, H. Kimura, S. Kimura, Y. Kubo, E. Nishibori, M. Takata, M. Sakata, K. Kato, Phys. Rev. B 66, 144110 (2002)Google Scholar
  19. J.M. Perez-Mato, M. Aroyo, A. García, P. Blaha, K. Schwarz, J. Schweifer, K. Parlinski, Phys. Rev. B 70, 214111 (2004)Google Scholar
  20. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, Vienna University of Technology, 2002, improved and updated UNIX version of the original copyrighted WIENCODE, which was published by P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)Google Scholar
  21. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Perdoson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)Google Scholar
  22. Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, F. Izumi, Phys. Rev. B 61, 6559 (2000)Google Scholar
  23. S. Sharma, C. Ambrosch-Draxl, P. Blaha, S. Auluck, Phys. Rev. B 60, 8610 (1999)Google Scholar
  24. R. Ahuja, O. Eriksson, B. Johansson, J.M. Wills, Phys. Rev. B 54, 10419 (1996)Google Scholar
  25. S. Saha, T.P. Sinha, A. Mookerjee, Phys. Rev. B 62, 8828 (2000)Google Scholar
  26. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)Google Scholar
  27. R. Machado, M.G. Stachiotti R.L. Migoni, A.H. Tera, Phys. Rev. B 70, 214112 (2004)Google Scholar
  28. F. Goubin, X. Rocquefelte, D. Pauwels, A. Tressaud, A. Demourgues, S. Jobic, Y. Montardic, J. Solid State Chem. 177, 2833 (2004)Google Scholar
  29. F. Goubin, Y. Montardi, P. Deniard, X. Rocquefelte, R. Breca, S. Jobica, J. Solid State Chem. 177, 89 (2004)Google Scholar
  30. M. Dadsetani, A. Pourghazi, Phys. Rev. B 73, 195102 (2006)Google Scholar
  31. L. Yi, Y.F. Duan, Chin. Phys. Lett. 22, 435 (2005)Google Scholar
  32. R. Vidya, P. Ravindran, A. Kjekshus, H. Fjellvag, Phys. Rev. B 65, 144422 (2004)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Mathematics and Information SciencesNorth China Institute of Water Conservancy and Hydroelectric PowerZhengzhouP.R. China
  2. 2.College of Physics and Information Engineering, Henan Normal UniversityXinxiangP.R. China
  3. 3.Department of PhysicsHuazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations