The European Physical Journal B

, Volume 66, Issue 3, pp 385–398 | Cite as

Extended Hubbard model with renormalized Wannier wave functions in the correlated state: beyond the parametrized models

Computational Methods

Abstract

The method used earlier for analysis of correlated nanoscopic systems is extended to infinite (periodic) s-band-like systems described by the Hubbard model. The optimized single-particle Wannier wave functions contained in the parameters of the extended Hubbard model (in the nearest-neghbor hopping (-t), in the magnitude of the intraatomic interaction U, and in other parameters) are determined explicitly in the correlated state for the electronic systems of various symmetries and dimensions: Hubbard chain, square and triangular planar lattices, and the three cubic lattices (SC, BCC, FCC). In effect, the evolution of the electronic properties as a function of interatomic distance R is obtained. The model parameters in most cases do not scale linearly with the lattice spacing and hence, their solution as a function of microscopic parameters reflects only qualitatively the system evolution. Also, the atomic energy changes with R and therefore should be included in the model analysis. The solutions in one dimension (D = 1) can be analyzed both rigorously (by making use of the Lieb–Wu solution) and compared with the approximate Gutzwiller treatments. In higher dimensions (D = 2 and 3) only the latter approach is possible to implement within the scheme. The renormalized single particle wave functions are almost independent of the choice of the scheme selected to diagonalize the Hamiltonian in the Fock space in D = 1 case. For dimensions D > 1 the qualitative behavior is independent of the structure considered. The wave-function size increases above the Mott-Hubbard localization threshold and gradually reaches the atomic limit value. The method can be extended to other approximation schemes, as stressed at the end.

PACS

71.27.+a Strongly correlated electron systems; heavy fermions 71.30.+h Metal-insulator transitions and other electronic transitions 71.10.Fd Lattice fermion models (Hubbard model, etc.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. review articles in: Metal-Insulator Transitions Revisited, edited by P.P. Edwards, C.N.R. Rao (Taylor and Francis, London, 1995)Google Scholar
  2. For didactical review see e.g. J. Spałek, Eur. J. Phys. 21, 511 (2000); J. Spałek, J. Solid State Chem. 88, 70 (1990)Google Scholar
  3. For review see: V.I. Anisimov, J. Zaanen, O.K. Anderson, Phys. Rev. B 44, 993 (1991); V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997)Google Scholar
  4. V.I. Anisimov, J. Phys: Condens. Matter 9, 7359 (1997); A.I. Lichtenstein, M.I. Katsenelson, Phys. Rev. B 57, 6884 (1998); for a didactical review see: G. Kotliar, D. Vollhardt, Phys. Today, March 2004, pp. 53–59; see also K. Held, O.K. Andersen, M. Feldbacher, A. Yamasaki, Y.-F. Yang, e-print arXiv: cond-mat/0801.2634 Google Scholar
  5. A. Matsura et al., Phys. Rev. B 58, 3690 (1998); S.-K. Mo et al., Phys. Rev. Lett. 90, 186403 (2003)Google Scholar
  6. I. Schnell, G. Czycholl, R.C. Albers, Phys. Rev. B 65, 075103 (2002)Google Scholar
  7. J. Spałek, R. Podsiadły, W. Wójcik, A. Rycerz, Phys. Rev. B 61, 15676 (2000); A. Rycerz, J. Spałek, Eur. Phys. J. B 40, 153 (2004); for review see: J. Spałek, E.M. Görlich, A. Rycerz, R. Zahorbeński, J. Phys.: Condens. Matter 19, 1 (2007); e-print arXiv: cond-mat/0610815 (2006) Google Scholar
  8. J. Spałek, in Encyclopedia of Condensed Matter Physics edited by F. Bassani et al. (Elsevier, Amsterdam, 2005), Vol. 3, pp. 126–36; J. Spałek, Phys. Stat. Solidi (b) 243, 78 (2006)Google Scholar
  9. cf. e.g. S.S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co., Evanston, 1961), Chap. 6, for didactical overview see: B. Robertson, Am. J. Phys. 41, 678 (1973)Google Scholar
  10. A. Rycerz, Physical properties and quantum phase transitions in strongly correlated electron systems from combined exact diagonalization - ab initio approach, Ph. D. Thesis, Jagiellonian University, Kraków (2003); see http://th-www.if.uj.edu.pl/ztms/Adam_Rycerz_doktorat.pdfGoogle Scholar
  11. J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Saski, H. Tatewaki, Gaussian Basis Sets for Molecular Calculations, edited by S. Huzinaga (Elsevier, Amsterdam, 1984)Google Scholar
  12. R. Ahlrichs, R.P. Taylor, J. Chem. Phys. 78, 315 (1981)Google Scholar
  13. J.F. Rico, J.J. Fernández, I. Ema, R. López, G. Ramírez, Inter. J. Quan. Chem. 78, 83 (2000)Google Scholar
  14. E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968); E.H. Lieb, Physica A 321, 1 (2003); M. Takahashi, Thermodynamics of one-dimensional solvable models (Cambridge Iniv. Press, 1999), Chap. 6Google Scholar
  15. W. Metzner, D. Vollhardt, Phys. Rev. B 37, 7382 (1988)Google Scholar
  16. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)Google Scholar
  17. J. Kurzyk, J. Spałek, W. Wójcik, Acta Phys. Polon. A, 111, 603 (2007); e-print arXiv:0706.1266 (2007) Google Scholar
  18. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965)Google Scholar
  19. J. Spałek, A.M. Oleś, J.M. Honig, Phys. Rev. B 28, 6802 (1983)Google Scholar
  20. T. Ogawa, K. Kanda, T. Matsubara, Prog. Theor. Phys. 53, 614 (1975)Google Scholar
  21. M. Buchheit, P.D. Loly, Am. J. Phys. 40, 289 (1972)Google Scholar
  22. H. Bethe, E. Salpeter, Phys. Rev. 82 (1951)Google Scholar
  23. E.M. Görlich, Properties of molecules and nanoscopic systems from a combined exact diagonalization – ab initio approach, Ph. D. Thesis, Jagiellonian University, Kraków (2004), see http://th-www.if.uj.edu.pl/ztms/Edek_Goerlich_doktorat.pdf; E. Görlich, J. Spałek, Physica B 378–380, 1075 (2006)Google Scholar
  24. J. Kurzyk, Correlated electron systems of various dimensionality with inclusion of single-particle wave-function optimization (in Polish), Ph. D. Thesis, Jagiellonian University, Kraków (2007), see http://th-www.if.uj.edu.pl/ztms/Jan_Kurzyk_doktorat.pdfGoogle Scholar
  25. A. Kleinerg, J. Spałek, Phys. Rev. B 57, 12041 (1998); particularly Section IVGoogle Scholar
  26. J. Bünemann, F. Gebhard, T. Ohm, R. Umstätter, S. Weiser, W. Weber, R. Classen, D. Ehm, A. Harasawa, A. Kakizaki, A. Kimura, G. Nicolay, S. Shin, V.N. Strocov, Europhys. Lett. 61, 667 (2003); for review see: J. Bünemann et al., e-print arXiv: cond-mat/0503332 Google Scholar
  27. X.Y. Deng, X. Dai, Z. Fang, Europhys. Lett. 83, 37008 (2008); G-T. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 101, 066403 (2008)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Institute of Physics, Cracow University of TechnologyKrakówPoland
  2. 2.Marian Smoluchowski Institute of Physics, Jagiellonian UniversityKrakówPoland

Personalised recommendations