The European Physical Journal B

, Volume 66, Issue 3, pp 361–368 | Cite as

Exact ground state of a spin ladder with a quantum phase transition

  • W. Brzezicki
  • A. M. Oleś
Open Access
Solid State and Materials


We introduce a spin ladder with Ising interactions along the legs and intrinsically frustrated Heisenberg-like ferromagnetic interactions on the rungs. The model is solved exactly in the subspaces relevant for the ground state by mapping to the quantum Ising model, and we show that a first order quantum phase transition separates the classical from quantum regime, with the spin correlations on the rungs being either ferromagnetic or antiferromagnetic, and different spin excitations in both regimes. The present case resembles the quantum phase transition found in the compass model in one and two dimensions.


75.10.Jm Quantized spin models 64.70.Tg Quantum phase transitions 75.10.Pq Spin chain models 


  1. E. Dagotto, Rep. Prog. Phys. 62, 1525 (1999)Google Scholar
  2. S. Gopalan, T.M. Rice, M. Sigrist, Phys. Rev. B 49, 8901 (1994)Google Scholar
  3. P. Horsch, F. Mack, Eur. Phys. J. B 5, 367 (1998)Google Scholar
  4. S. Trebst, H. Monien, C.J. Hamer, Z. Weihong, R.R.P. Singh, Phys. Rev. Lett. 85, 4373 (2000)Google Scholar
  5. C. Knetter, K.P. Schmidt, M. Grüninger, G.S. Uhrig, Phys. Rev. Lett. 87, 167204 (2001)Google Scholar
  6. S. Notbohm, P. Ribeiro, B. Lake, D.A. Tennant, K.P. Schmidt, G.S. Uhrig, C. Hess, R. Klingeler, G. Behr, B. Büchner, M. Reehuis, R.I. Bewley, C.D. Frost, P. Manuel, R.S. Eccleston, Phys. Rev. Lett. 98, 027403 (2007)Google Scholar
  7. K. Penc, J.-B. Fouet, S. Miyahara, O. Tchernyshyov, F. Mila, Phys. Rev. Lett. 99, 117201 (2007)Google Scholar
  8. L. Longa, A.M. Oleś, J. Phys. A 13, 1031 (1980)Google Scholar
  9. W. Brzezicki, J. Dziarmaga, A.M. Oleś, Phys. Rev. B 75, 134415 (2007)Google Scholar
  10. L.F. Feiner, A.M. Oleś, J. Zaanen, Phys. Rev. Lett. 78, 2799 (1997)Google Scholar
  11. S.D. Matteo, G. Jackeli, C. Lacroix, N.B. Perkins, Phys. Rev. Lett. 93, 077208 (2004); S.D. Matteo, G. Jackeli, N.B. Perkins, Phys. Rev. B 72, 024431 (2005); F. Vernay, K. Penc, P. Fazekas, F. Mila, Phys. Rev. B 70, 014428 (2004); F. Vernay, A. Ralko, F. Becca, F. Mila, Phys. Rev. B 74, 054402 (2006); G. Jackeli, D.I. Khomskii, Phys. Rev. Lett. 100, 147203 (2008)Google Scholar
  12. G. Khaliullin, S. Maekawa, Phys. Rev. Lett. 85, 3950 (2000); L.F. Feiner, A.M. Oleś, Phys. Rev. B 71, 144422 (2005)Google Scholar
  13. A.M. Oleś, P. Horsch, L.F. Feiner, G. Khaliullin, Phys. Rev. Lett. 96, 147205 (2006)Google Scholar
  14. J. Zaanen, A.M. Oleś, P. Horsch, Phys. Rev. B 46, 5798 (1992); J. van den Brink, P. Horsch, A.M. Oleś, Phys. Rev. Lett. 85, 5174 (2000); M. Daghofer, K. Wohlfeld, A.M. Oleś, E. Arrigoni, P. Horsch, Phys. Rev. Lett. 100, 066403 (2008)Google Scholar
  15. J. van den Brink, New J. Phys. 6, 201 (2004)Google Scholar
  16. D.I. Khomskii, M.V. Mostovoy, J. Phys. A 36, 9197 (2003)Google Scholar
  17. J. Dorier, F. Becca, F. Mila, Phys. Rev. B 72, 024448 (2005)Google Scholar
  18. S. Wenzel, W. Janke, Phys. Rev. B 78, 064402 (2008)Google Scholar
  19. J.H.H. Perk, H.W. Capel, M.J. Zuilhof, T.J. Siskens, Physica A 81, 319 (1975)Google Scholar
  20. Generic orbital superexchange interactions in Mott insulators are AFM, see K.I. Kugel, D.I. Khomskii, Sov. Phys. Usp. 25, 231 (1982); the present model gives equivalent results for the FM interactions along the ladder legsGoogle Scholar
  21. V.J. Emery, C. Noguera, Phys. Rev. Lett. 60, 631 (1988)Google Scholar
  22. S. Lal, M.S. Laad, J. Phys.: Condens. Matter 20, 235213 (2008)Google Scholar
  23. E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961); S. Katsura, Phys. Rev. 127, 1508 (1962)Google Scholar
  24. J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005)Google Scholar
  25. D.C. Mattis, The Theory of Magnetism Made Simple (World Scientific, Singapore, 2006)Google Scholar

Copyright information

© The Author(s) 2008

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Marian Smoluchowski Institute of Physics, Jagellonian UniversityKrakówPoland
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations