Advertisement

The European Physical Journal B

, Volume 66, Issue 2, pp 223–226 | Cite as

Impurity states of electrons in quantum dots in external magnetic fields

  • A. M. Ermolaev
  • G. I. Rashba
Mesoscopic and Nanoscale Systems

Abstract

The influence of isolated impurity atoms on the electron energy spectrum in a parabolic quantum dot in quantizing magnetic field is studied. The impurity potential is approximated by a Gaussian separable operator which allows one to obtain the exact solution of the problem. We demonstrate that in the electron energy spectrum there is a set of local levels which are split from the Landau zone boundaries in the upward or downward direction depending on the impurity type. We have calculated the local level positions, the wave functions of electrons in bound states, and the residues of the electron scattering amplitudes by impurity atoms at the poles.

PACS

73.21.La Quantum dots 71.70.Di Landau levels 71.55.-i Impurity and defect levels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1328 (2002) Google Scholar
  2. I.M. Lifshitz, Zh. Eksp. Theor. Fiz. 17, 1017 (1947) Google Scholar
  3. I.M. Lifshitz, S.A. Gredeskul, L.A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988) Google Scholar
  4. S.A. Gredeskul, M. Zusman, Y. Avishai, M.Ya. Azbel, Phys. Rep. 288, 223 (1997), and references therein Google Scholar
  5. A.M. Ermolaev, M.I. Kaganov, JETP Lett. 6, 395 (1967) Google Scholar
  6. A.M. Ermolaev, Sov. Phys. JETP 27, 673 (1968) Google Scholar
  7. E.A. Kaner, A.M. Ermolaev, JETP Lett. 44, 306 (1986) Google Scholar
  8. E.A. Kaner, A.M. Ermolaev, Sov. Phys. JETP 65, 1266 (1987) Google Scholar
  9. N.V. Gleizer, A.M. Ermolaev, G.I. Rashba, Low Temp. Phys. 20, 919 (1994) Google Scholar
  10. V.A. Fock, Zs. Phys. 47, 446 (1928) Google Scholar
  11. C.G. Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1930) Google Scholar
  12. L.D. Landau, Zs. Phys. 64, 629 (1930) Google Scholar
  13. M.I. Kaganov, S. Klama, Fiz. Tverd. Tela 20, 2360 (1978) Google Scholar
  14. Yu.N. Demkov, V.N. Ostrovskii, Method of the Short Range Potentials in the Atomic Physics (Plenum Press, New York, 1988) Google Scholar
  15. J.R. Taylor, Scattering Theory (Wiley, New York, 1972) Google Scholar
  16. H. Bateman, A. Erdelyi, Higher Transcendental Functions (Mc Graw-Hill Book Company, New York, 1953), Vol. 1, 2 Google Scholar
  17. E.P. Bataka, A.M. Ermolaev, Izv. Vuzov ser. Fizika 1, 111 (1983) Google Scholar
  18. A.M. Ermolaev, G.I. Rashba, Low Temp. Phys. 30, 69 (2004) Google Scholar
  19. A.M. Kosevich, Fiz. Tverd. Tela 6, 3423 (1964) Google Scholar
  20. L Landau, E Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, New-York, 1989) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsV.N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations