The European Physical Journal B

, Volume 66, Issue 1, pp 67–74 | Cite as

Influence of inter cell resonant tunneling on the out-of-plane electronic transport behavior in layered high Tc cuprates

Computational Methods

Abstract

The influence of inter unit cell resonant tunneling between the copper-oxygen planes on the c-axis electronic conductivity (σc) in normal state of optimal doped bilayer high Tc cuprates like Bi2Sr2CaCu2O8+x is investigated using extended Hubbard Hamiltonian including resonant tunneling term (T12) between the planes in two adjoining cells. The expression for the out-of-plane (c-axis) conductivity is calculated within Kubo formalism and single particle Green's function by employing Green's function equations of motion technique within meanfield approximation. On the basis of numerical computation, it is pointed out that the renormalized c-axis conductivity \((\tilde {\sigma}_{c})\) increases exponentially with the increment in inter cell resonant tunneling. The effect of T12 on renormalized c-axis conductivity is found to be prominent at low temperatures as compared to temperatures above room temperature (~300 °K). The Coulomb correlation suppresses the variation of renormalized c-axis conductivity with temperature, while renormalized c-axis conductivity increases on increasing carrier concentration. These theoretical results are viewed in terms of existing c-axis transport measurements.

PACS

74.72.Hs Bi-based cuprates 74.72.Bk Y-based cuprates 74.25.Fy Transport properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003) Google Scholar
  2. S.L. Cooper, K.E. Gray, inPhysical Properties of High-Temperature Superconductors IV, edited by D.M. Ginsberg (World Scientific, Singapore, 1994) Google Scholar
  3. S.V. Dordevic, E.J. Singley, D.N. Basov, S. Komiya, Y. Ando, E. Bucher, C.C. Homes, M. Strongin, Phys. Rev. B 65, 134511 (2002) Google Scholar
  4. T.P. Devereaux, Phys. Rev. B 68, 094503 (2003) Google Scholar
  5. T. Watanabe, T. Fujii, A. Matsuda, Phys Rev. Lett. 79, 2113 (1997) Google Scholar
  6. L. Forro, Phys. Lett. A 179, 140 (1993) Google Scholar
  7. D.N. Basov, S.I. Woods, A.S. Katz, E.J. Singley, R.C. Dynes, M. Xu, D.G. Hinks, C.C. Homes, M. Strong, Science 283, 49 (1999) Google Scholar
  8. H.J.A. Molegraaf, C. Presura, D. van der Marel, P.H. Kes, M. Li, Science 295, 2239 (2002) Google Scholar
  9. J.L. Tallon, J.W. Loram, Physica C 349, 53 ( 2001) Google Scholar
  10. A. Ramsak, I. Sega, P. Prelovsek, Phys. Rev. Lett. 81, 3745 (1998) Google Scholar
  11. C. Kendziora, M.C. Martin, A. Haartye, L. Mihaly, L. Forros, Phys. Rev. B 48, 3531 (1993) Google Scholar
  12. N. Kumar, A.M. Jayannavar, Phys. Rev. B 45, 5001 (1992) Google Scholar
  13. P.W. Anderson, Z. Zou, Phys. Rev. Lett. 60, 132 (1988) Google Scholar
  14. P.W. Anderson, The Theory of Superconductivity in the High T c Cuprates (Princeton University press, Princeton, 1997) Google Scholar
  15. A.J. Leggett, Braz. J. Phys. 22, 129 (1992) Google Scholar
  16. Z. Tesanovic, Phys. Rev. B 36, 2364 (1987) Google Scholar
  17. A.S. Alexandrov, V.V. Kabanov, N.F. Mott, Phys Rev. Lett. 77, 4796 (1996) Google Scholar
  18. R. Lal, Ajay, R.L. Hota, S.K. Joshi, Phys. Rev. B 57, 6126 (1998) Google Scholar
  19. M. Zoli, Phys. Rev. B 56, 111 (1997) Google Scholar
  20. A. Bansil, M. Lindroos, S. Sahrakorpi, R.S. Markiewicz, Phys. Rev. B 71, 012503 (2005) Google Scholar
  21. R.S. Markiewicz, S. Sahrakorpi, M. Lindroos, Hsin Lin, A. Bansil, Phys. Rev. B 72, 054519 (2005) Google Scholar
  22. Y.D. Chuang, A.D. Gromko, A. Fedorov, Y. Aiura, K. Oka, Y. Ando, H. Eisaki, S.I. Uchida, D.S. Dessau, Phys. Rev. Lett. 87, 117002 (2001) Google Scholar
  23. D.L. Feng, A. Damascelli, K.M. Shen, N. Motoyama, D.H. Lu, H. Eisaki, K. Shimizu, J.I. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G.D. Gu, X.J. Zhou, C. Kim, F. Ronning, N.P. Armitage, Z.X. Shen, Phys. Rev. Lett. 88, 107001 (2002) Google Scholar
  24. W.C. Wu, W.A. Atkinson, J.P. Carbotte, J. Supercond. 11, 305 (1998) Google Scholar
  25. W. Kim, J.P. Carbotte, Phys. Rev. B 62, 8661 (2000) Google Scholar
  26. Y.I. Latyshev, T. Yamashita, L.N. Bulaevskii, M.J. Graf, A.V. Balatsky, M.P. Maley, Phys. Rev. Lett. 82, 5345 (1999) Google Scholar
  27. A.A. Abrikosov, Phys. Rev. B 55, 11735 (1997) Google Scholar
  28. A.A. Abrikosov, Physica C 317, 154 (1999) Google Scholar
  29. D. Bohm, Quantum Theory (Prentice Hall, New York, 1951) Google Scholar
  30. R. Kubo, J. Phys. Soc. Jpn 28, 1402 (1957) Google Scholar
  31. W.A. Rodrigues, Rev. Brasil de Fisica 9, 109 (1979) Google Scholar
  32. G.D. Mahan, Many particle physics, 2nd edn. (Plenum Press, New York, 1990) Google Scholar
  33. D.N. Zubarev, Sov. Phys. Usp. 3, 302 (1960) Google Scholar
  34. Ajay, Physica C 316, 267 (1999) Google Scholar
  35. Ajay, A. Pratap, S.K. Joshi, Physica C 371, 139 (2002) Google Scholar
  36. M. Turlakov, A. Leggett, Phys. Rev. B 63, 064518 (2001) Google Scholar
  37. Y. Nakamura, S. Uchida, Phys. Rev. B 47, 8369 (1993). Google Scholar
  38. X.H. Hou, J.Q. Li, J.W. Li, J.W. Xiang, F. Wu, Y.Z. Huang, Z.X. Zhao, Phys. Rev. B 68; 134505 (2003) 50, 496 (1994) Google Scholar
  39. M. Giura, R. Fastampa, S. Sarti, E. Silva, Phys. Rev. B 68, 134505 (2003) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of PhysicsG.B.Pant University of Agriculture and TechnologyUttarakhandIndia

Personalised recommendations