Application of a hybrid quantum mechanics and empirical moleculardynamics multiscale method to carbon nanotubes

Computational Methods

Abstract.

We present a hybrid multiscale method for coupling quantum mechanicsto empirical molecular dynamics, which is named as hybrid energydensity method. In this approach, quantum mechanical treatment isspatially confined to a small region, surrounded by a largermolecular mechanical region. A unified expression of total energycombining quantum mechanical and molecular mechanical descriptions,is given by employing a localized energy and a weight associatedwith it on each site. And we can perform the dynamical simulationsof entire system according to the given total energy. We use thehybrid energy density method to simulate two models of carbonnanotubes (CNT): one is a long CNT with an open end, and the other along CNT containing a di-vacancy under stretching. Calculations ofthe two CNT models demonstrate that the hybrid multiscale method isrequired to accurately treat the local quantum mechanical regionwith the influence of the larger molecular mechanical region.

PACS.

71.15.Mb Density functional theory, local density approximation, gradient and other corrections 61.46.-w Structure of nanoscale materials 31.15.xv Molecular dynamics and other numerical methods 

References

  1. G. Lu, E. Kaxiras, in Handbook of Theoreticaland Computational Nanotechnology, edited by M. Rieth, W.Schmmers (American Scientific Publishers, Stevenson Ranch, CA,2004), Chap. 22Google Scholar
  2. S. Yip, Nature Mater. 2, 3 (2003)Google Scholar
  3. E.B. Tadmor, M. Ortiz, R. Phillips, Philos.Mag. A 73, 1529 (1996)Google Scholar
  4. J. Gao, in Reviews in Computational Chemistry,edited by K.B. Libkowitz and D.B. Boyd (VCH, New York, 1996), pp.119–185Google Scholar
  5. R.E. Rudd, J.Q. Broughton, Phys. Rev. B 58,R5893 (1998)Google Scholar
  6. R.E. Rudd, J.Q. Broughton, Phys. Rev. B 72,144104 (2005)Google Scholar
  7. J.Q. Broughton, F.F. Abraham, N. Bernstein, E. Kaxiras, Phys. Rev. B 60, 2391 (1999)Google Scholar
  8. E. Lidorikis et al., Phys. Rev. Lett.87, 086104 (2001)Google Scholar
  9. M.J. Buehler, A.C.T. van Duin, W.A.Goddard III, Phys. Rev. Lett. 96, 095505 (2006)Google Scholar
  10. M.J. Buehler, H. Tang, A.C.T. van Duin, W.A.Goddard III, Phys. Rev. Lett. 99, 165502 (2007)Google Scholar
  11. N. Bernstein, D. Hess, Phys. Rev. Lett.91, 025501 (2003)Google Scholar
  12. N. Bernstein, D. Hess, Mater. Res. Soc.Symp. Proc. 653, Z2.7.1 (2001)Google Scholar
  13. V.B. Shenoy et al., J. Mech. Phys. Solids47, 611 (1999)Google Scholar
  14. N. Govind, Y.A. Wang, A.J.R.da Silva,E.A. Carter, Chem. Phys. Lett. 295, 129 (1998)Google Scholar
  15. N. Choly, G. Lu, W. E, E. Kaxiras, Phys. Rev. B 71, 094101(2005)Google Scholar
  16. P. Huang, E.A. Carter, J. Chem. Phys. 125, 084102(2006)Google Scholar
  17. X. Zhang, G. Lu, Phys. Rev. B 76, 245111(2007)Google Scholar
  18. G. Lu, E.B. Tadmor, E. Kaxiras, Phys. Rev. B73, 024108 (2006)Google Scholar
  19. T. Mordasini, W. Thiel, Chimia 52, 288 (1998)Google Scholar
  20. T.K. Woo et al., ACS Symp. Ser. 721, 173 (1999)Google Scholar
  21. P. Sherwood, in Modern methods and algorithms of quantumchemistry, edited by J. Grotendorst (NIC-Directors: Princeton, 2000) Vol. 3, p. 285Google Scholar
  22. J. Gao, D.G. Truhlar, Annu. Rev. Phys. Chem. 53,467 (2002)Google Scholar
  23. S. Ogata, R. Belkada, Comput. Mater. Sci. 30,189 (2004)Google Scholar
  24. H. Lin, D.G. Truhlar, Theor. Chem. Acc. 117,185 (2007)Google Scholar
  25. X. Li, W. E, J. Mech. Phys. Solids 53, 1650(2005)Google Scholar
  26. G.J. Wagner, W.K. Liu, J. Comput. Phys. 190, 249(2003)Google Scholar
  27. H.S. Park, W.K. Liu, Computer Methods in Applied Mechanicsand Engineering 193, 1733 (2004)Google Scholar
  28. S.Q. Tang, T.Y. Hou, W.K. Liu, J. Comput.Phys. 231, 57 (2006)Google Scholar
  29. C. Woodward, S.I. Rao, Phys. Rev. Lett. 88, 216402 (2002)Google Scholar
  30. C.Y. Wang, X. Zhang, Curr. Opin. Solid state mater. Science 10, 2 (2006)Google Scholar
  31. S. Iijima, Nature, 354, 56 (1991)Google Scholar
  32. Articles on nanotubes in Phys. World 13, 29 (2000)Google Scholar
  33. R.H. Baughman, A.A. Zakhidov, W.A. de Heer,Science 297, 787 (2002)Google Scholar
  34. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864(1964); W. Kohn, L.J. Sham, Phys. Rev. 140, A1133(1965)Google Scholar
  35. J. Tersoff, Phys. Rev. B 37, 6991(1988)Google Scholar
  36. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443(1984)Google Scholar
  37. M. Born, J.R. Oppenheimer, Ann. Physik84, 457 (1927)Google Scholar
  38. R.M. Martin, in Electronic structure: basic theoryand pratical methods (Cambridge Univ. Press, Cambridge, 2004),Sect. 19.1Google Scholar
  39. V. Heine, in Solid State Phys. 35, 92 (1980)Google Scholar
  40. R.A. Deegan, J. Phys. C 1, 763 (1968)Google Scholar
  41. C.M. Varma, W. Weber, Phys. Rev. Lett. 39, 1094 (1977)Google Scholar
  42. A.R. Mackintosh, O.K. Andersen, in Electronsat the Fermi Surface edited by M. Springgord. (Cambridge Univ. Press,London and New York, 1980), Sect. 3.1Google Scholar
  43. W. Kohn, Phys. Rev. Lett. 76, 3168 (1996)Google Scholar
  44. S. Goedecher, Rev. Mod. Phys. 71, 1085 (1999)Google Scholar
  45. M. Tuckerman, B.J. Berne, G.J. Martyna, J. Chem. Phys. 97, 1990(1992)Google Scholar
  46. B. Delly, J. Chem. Phys. 92, 508 (1990); B. Delly,J. Quant. Chem. 69, 423 (1998)Google Scholar
  47. J.P. Perdew, K. Burke, M. Ernzerhof, Phy. Rev. Lett.77, 3865 (1996)Google Scholar
  48. D.W. Brenner, Phys. Rev. B 42, 9458 (1990)Google Scholar
  49. D.B. Mawhinney, V. Naumenko, A. Kuznetsova, J.T. Yates Jr., J.Liu, R.E. Smalley, Chem. Phys. Lett. 324, 213 (2000)Google Scholar
  50. R. Andrews, D. Jacques, D. Qian, E.C. Dickey, Carbon 39,1681 (2001)Google Scholar
  51. B. Ni, S.B. Sinnott, Phys. Rev. B 61, R16343 (2000)Google Scholar
  52. M. Terrones, F. Banhart, N. Grobert, J.-C. Charlier, H. Terrones, P. Ajayan, Phys. Rev. Lett. 89, 075505 (2002)Google Scholar
  53. M. Bockrath et al., Science 297, 283(2001)Google Scholar
  54. M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K.Kaski1, Phys. Rev. B 70, 245416 (2004)Google Scholar
  55. C. Gomez-Navarro et al. Nature Mater. 4,534 (2005)Google Scholar
  56. S. Zhang et al, Phys. Rev. B 71, 115403(2005)Google Scholar
  57. Z. Li, C.Y. Wang, X. Zhang, S.H. Ke, W. Yang, J. Phys.: Condens. Matter 20, 345225 (2008)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of PhysicsTsinghua UniversityBeijingP.R. China
  2. 2.The International Centre for Materials Physics, Chinese Academy of SciencesShenyangP.R. China

Personalised recommendations