Advertisement

Coexisting stochastic and coherence resonance in a mean-field dynamo model for Earth’s magnetic field reversals

Statistical and Nonlinear Physics

Abstract.

Using a spherically symmetric mean-field α2-dynamomodel for Earth’s magnetic field reversals, we show thecoexistence of the noise-induced phenomena coherence resonance and stochastic resonance. Stochastic resonance was recentlyinvoked to explain the 100 kyr periodicity in the distribution ofresidence times between reversals.The comparison of the resulting residence time distribution withthe paleomagnetic one allows for some estimate ofthe effective diffusion time of the Earth’s core which may be100 kyr or slightly below rather than200 kyr as it would result from the molecular resistivity.

PACS.

91.25.Mf Magnetic field reversals: process and timescale 91.25.Cw Origins and models of the magnetic field; dynamo theories 05.40.Ca Noise 

References

  1. R.T. Merrill, M.W. McElhinny, P.L. McFadden, The magnetic field of the Earth (Academic Press, San Diego, 1996)Google Scholar
  2. J.-P. Valet, L. Meynadier, Y. Guyodo, Nature 435, 802 (2005)Google Scholar
  3. V. Carbone, L. Sorriso-Valvo, A. Vecchio, F. Lepreti, P. Veltri, P. Harabaglia, I. Guerra, Phys. Rev. Lett. 96, 128501 (2006)Google Scholar
  4. L. Sorriso-Valvo, F. Stefani, V. Carbone, G. Nigro, F. Lepreti, A. Vecchio, P. Veltri, Phys. Earth Planet. Inter. 164, 197 (2007)Google Scholar
  5. C. Consolini, P. De Michelis, Phys. Rev. Lett. 90, 058501 (2003)Google Scholar
  6. J. Wicht, P. Olson, Geochem. Geophys. Geosys. 5, Q03H10 (2004)Google Scholar
  7. G.A. Glatzmaier, P.H. Roberts, Nature 377, 2003 (1995)Google Scholar
  8. A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, F. Stefani, Rev. Mod. Phys. 74, 973 (2002)Google Scholar
  9. A. Gailitis, O. Lielausis, G. Gerbeth, F. Stefani, in Magnetohydrodynamics. Historical Evolution and Trends edited by S. Molokov, R. Moreau, H.K. Moffatt (Springer, Dordrecht, 2007), p. 37Google Scholar
  10. M. Berhanu et al., Europhys. Lett. 77, 59001 (2007)Google Scholar
  11. F. Pétrélis, N. Mordant, S. Fauve, Geophys. Astrophys. Fluid Dyn. 101, 289 (2007)Google Scholar
  12. M. Bourgoin et al., New J. Phys. 8, 329 (2006)Google Scholar
  13. P. Hoyng, M.A.J.H. Ossendrijver, D. Schmidt, Geophys. Astrophys. Fluid Dyn. 94, 263 (2001)Google Scholar
  14. P. Hoyng, J.J. Duistermaat, Europhys. Lett. 68, 177 (2004)Google Scholar
  15. I. Melbourne, M.R.E. Proctor, A.M. Rucklidge, in Dynamo and Dynamics, a Mathematical Challenge, edited by P. Chossat, D. Armbruster, I. Oprea (Kluwer, Dordrecht, 2001), p. 363Google Scholar
  16. M. Ossendrijver, Astron. Astrophys. Rev. 11, 287 (2003)Google Scholar
  17. P.H. Roberts, in Magnetohydrodynamics. Historical Evolution and Trends, edited by S. Molokov, R. Moreau, H.K. Moffatt (Springer, Dordrecht, 2007), p. 3Google Scholar
  18. F. Stefani, M. Xu, L. Sorisso-Valvo, G. Gerbeth G., U. Günther, Geophys. Astrophys. Fluid Dyn. 101, 227 (2007)Google Scholar
  19. S. Lorito, D. Schmitt, G. Consolini, P. De Michelis, Astr. Nachr. 326, 227 (2005)Google Scholar
  20. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)Google Scholar
  21. T. Yamazaki, H. Oda, Science 295, 2435 (2002)Google Scholar
  22. H.S. Liu, R. Kolenkiewicz, C. Wade, Fluct. Noise Lett. 3, L63 (2001)Google Scholar
  23. A.P. Roberts, M. Winklhofer, W.-T. Liang,C.-S. Horng, Earth Planet. Sci. Lett. 216, 187 (2003)Google Scholar
  24. M. Winklhofer, personal communicationGoogle Scholar
  25. H. Yoshimura, Astrophys. J. 235, 625 (1980)Google Scholar
  26. F. Stefani, G. Gerbeth, Phys. Rev. Lett. 94, 184506 (2005)Google Scholar
  27. F. Stefani, G. Gerbeth, U. Günther, M. Xu, Earth Planet. Sci. Lett. 143, 828 (2006)Google Scholar
  28. F. Stefani, G. Gerbeth, U. Günther, Magnetohydrodynamics 42, 153 (2006)Google Scholar
  29. T. Kato, Perturbation Theory of Linear Operators (Springer, New York, 1966)Google Scholar
  30. A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)Google Scholar
  31. R. Centurelli, S. Musacchio, R.A. Pasmanter, A. Vulpiani, Physica A 360, 261 (2006)Google Scholar
  32. F.D. Stacey, O.L. Anderson, Phys. Earth Planet. Inter. 124, 153 (2001)Google Scholar
  33. F. Krause, K.-H. Rädler, Mean-field Magnetohydrodynamics and Dynamo Theory (Akademie-Verlag, Berlin, 1980)Google Scholar
  34. A.B. Reighard, M.R. Brown, Phys. Rev. Lett. 86, 2794 (2001)Google Scholar
  35. S. Denisov, V. Noskov, R. Stepanov, P. Frick, Pisma v ZhETF 88, 198 (2008)Google Scholar
  36. E.J. Spence et al., Phys. Rev. Lett. 98, 164503 (2007)Google Scholar
  37. F. Stefani, G. Gerbeth, Phys. Rev. E 67, 027302 (2003)Google Scholar
  38. A. Giesecke, G. Rüdiger, D. Elstner, Astron. Nachr. 326, 693 (2005)Google Scholar
  39. A. Giesecke, U. Ziegler, G. Rüdiger, Phys. Earth Planet. Inter. 152, 90 (2005)Google Scholar
  40. R. Meinel, A. Brandenburg, Astron. Astrophys. 238, 369 (1990)Google Scholar
  41. G.J. Escalera Santos, M. Rivera, P. Parmananda, Phys. Rev. Lett. 92, 230601 (2004)Google Scholar
  42. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. E 49, 4878 (1994)Google Scholar
  43. T. Schreiber, A. Schmitz, Physica D, 142, 346 (2000)Google Scholar
  44. R. Hegger, H. Kantz, T. Schreiber, Chaos 9, 413 (1999)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Forschungszentrum Dresden-Rossendorf, PO Box 510119DresdenGermany

Personalised recommendations