Advertisement

Indirect magnetic interaction in the “net fractal” systems

  • Z. Bak
  • R. Jaroszewicz
Article
  • 44 Downloads

Abstract

A localized spin system of fractal symmetry with indirect exchange between them is considered. We define a specific class of fractals as the “net fractals” which display multidimensional logarithmic periodicity. Basing on this property we model the effective indirect exchange interaction by the conventional RKKY exchange with the logarithmic coordinates playing role of the real space ones. Finally, we discuss the case of non-ideal “net fractals” in which fractional dynamics of the electrons is expected. In this case we show that RKKY exchange integrals are given by the formulas derived under assumption that a system has a fractional spectral dimension.

PACS

61.43.Hv Fractals; macroscopic aggregates 75.30.Hx Magnetic impurity interactions 

References

  1. 1.
    M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)CrossRefADSGoogle Scholar
  2. 2.
    R. Bouzerar, G. Bouzerar, T. Ziman, Phys. Rev. B 73, 024411 (2006)CrossRefADSGoogle Scholar
  3. 3.
    P. Mahadevan, A. Zunger, D.D. Sarma, Phys. Rev. Lett. 93, 177201 (2004)CrossRefADSGoogle Scholar
  4. 4.
    T. Balcerzak, J. Mag. Mag. Mater. 310, 1651 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Z. Bak, R. Jaroszewicz, W. Gruhn, J. Mag. Mag. Mater. 213, 340 (2000)CrossRefADSGoogle Scholar
  6. 6.
    Z. Bak, Phase Transitions 80, 79 (2007)CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Alexander, Phys. Rev. B 29, 5504 (1984)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Z. Bak, Phys. Rev. B 68, 064511 (2003)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    T. Nakayama, K. Yakubo, R.L. Orbach, Rev. Mod. Phys. 66, 381 (1994)CrossRefADSGoogle Scholar
  10. 10.
    A. Hanyga, Proc. Roy. Soc. (London) A 457, 2993 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A.A. Stanislavsky, Acta. Phys. Pol. A 37, 319 (2006)ADSGoogle Scholar
  12. 12.
    Ya.E. Ryabov, A. Puzenko, Phys. Rev. B 66, 184201 (2002)CrossRefADSGoogle Scholar
  13. 13.
    N. Laskin, Phys. Rev. E 66, 056108 (2002)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of fractional Differential Equations (Elsevier, Amsterdam, 2006)MATHCrossRefGoogle Scholar
  15. 15.
    Y.Z. Povstenko, Int. J. Eng. Sci. 43, 977 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    R. Gorenflo, A. Iskanderov, Y. Luchko, Fractional Calculus & Applied Analysis 3, 76 (2000)Google Scholar
  17. 17.
    F. Mainardi, Y. Luchko, G. Pagnani, Fractional Calculus & Applied Analysis 4, 153 (2001)MATHMathSciNetGoogle Scholar
  18. 18.
    D. Mo, Z.J. Jiang, N. Ke, Solid State Commun. 114, 277 (2000)CrossRefADSGoogle Scholar
  19. 19.
    X.F. He, Phys. Rev. B 43 2063 (1991)CrossRefADSGoogle Scholar
  20. 20.
    R. Burioni, D. Cassi, A. Vezzani, J. Phys. A 35 1245 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    H. Bateman, A. Erdélyi, Higher Transcendental Functions, (McGraw-Hill, NY, 1953), Vol. II, all references concerning the page numbers go after Russian edition (Nauka, Moscow, 1974)Google Scholar
  22. 22.
    Z. Bak, Materials Science-Poland 25, 491 (2007)ADSGoogle Scholar
  23. 23.
    T.S. Chow, Phys. Lett. A 342, 148 (2005)MATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Z. Bak
    • 1
  • R. Jaroszewicz
    • 1
  1. 1.Institute of PhysicsJan Dlugosz University of CzestochowaCzestochowaPoland

Personalised recommendations