The European Physical Journal B

, Volume 62, Issue 3, pp 331–336 | Cite as

On the scaling of probability density functions with apparent power-law exponents less than unity

  • K. Christensen
  • N. Farid
  • G. Pruessner
  • M. Stapleton
Statistical and Nonlinear Physics

Abstract.

We derive general properties of the finite-size scaling of probability density functions and show that when the apparent exponent \(\tilde{\tau}\) of a probability density is less than 1, the associated finite-size scaling ansatz has a scaling exponent τ equal to 1, provided that the fraction of events in the universal scaling part of the probability density function is non-vanishing in the thermodynamic limit. We find the general result that τ≥1 and \(\tau \ge \tilde{\tau}\). Moreover, we show that if the scaling function \(\mathcal{G}(x)\) approaches a non-zero constant for small arguments, \(\lim_{x \to 0} \mathcal{G}(x) > 0\), then \(\tau = \tilde{\tau}\). However, if the scaling function vanishes for small arguments, \(\lim_{x \to 0} \mathcal{G}(x) = 0\), then τ= 1, again assuming a non-vanishing fraction of universal events. Finally, we apply the formalism developed to examples from the literature, including some where misunderstandings of the theory of scaling have led to erroneous conclusions.

PACS.

89.75.Da Systems obeying scaling laws 89.75.-k Complex systems 05.65.+b Self-organized systems 89.75.Hc Networks and genealogical trees 05.70.Jk Critical point phenomena 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.E. Stanley, Introduction to Phase Ttransitions and Critical Phenomena (Oxford University Press, 1971) Google Scholar
  2. D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor & Francis London, 1994) Google Scholar
  3. H.J. Jensen, Self-Organised Criticality (Cambridge University Press, 1998) Google Scholar
  4. F.J. Wegner, Phys. Rev. B 5, 4529 (1972) CrossRefADSGoogle Scholar
  5. V. Privman, P.C. Hohenberg, A. Aharony, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic, New York, 1991), Vol. 14, Chap. 1, pp. 1–134 Google Scholar
  6. R. Lübeck, R.D. Willmann, Nucl. Phys. B 718, 341 (2005) CrossRefADSMATHGoogle Scholar
  7. N. Farid, K. Christensen, New J. Phys. B 8, 212 (2006) CrossRefADSGoogle Scholar
  8. P. Pfeuty, G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena (John Wiley & Sons, Chichester, 1977) Google Scholar
  9. J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, New York, 1999) Google Scholar
  10. T. Ramstad, A. Hansen, Phys. Rev. E 73, 026306 (2006) CrossRefADSGoogle Scholar
  11. V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang, P. Meakin, Nature 379, 49 (1996) CrossRefADSGoogle Scholar
  12. A. Raval, Phys. Rev. E 68, 066119 (2003) CrossRefADSMathSciNetGoogle Scholar
  13. P. Bak, K. Christensen, L. Danon, T. Scanlon, Phys. Rev. Lett. 88, 178501 (2002) CrossRefADSGoogle Scholar
  14. J. Davidsen, M. Paczuski, Phys. Rev. Lett. 94, 048501 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • K. Christensen
    • 1
    • 2
  • N. Farid
    • 2
  • G. Pruessner
    • 2
    • 3
  • M. Stapleton
    • 2
  1. 1.Institute for Mathematical SciencesLondonUK
  2. 2.Blackett LaboratoryLondonUK
  3. 3.Mathematics Institute, University of WarwickCoventryUK

Personalised recommendations