Advertisement

The European Physical Journal B

, Volume 64, Issue 3–4, pp 573–583 | Cite as

Disorder effect on the traffic flow behavior

Article

Abstract

The effects of some disorders, on the traffic flow behavior, are studied numerically. Especially, the effect of mixture of vehicles of different velocities and/or lengths, the effects of different drivers reactions, the position and the extraction rate of off-ramp in the free way. Using a generalized optimal velocity model, for a mixture of fast and slow vehicles, we have investigated the effect of delay times τ f and τ s on the fundamental diagram. It is Found that the small delay times have almost no effect, while, for sufficiently large delay time τ s , the current profile displays qualitatively five different forms, depending on τ f , τ s and the fractions f f and f s of the fast and slow cars, respectively. The velocity (current) exhibits first-order transitions at low and/or high densities, from freely moving phase to the congested state, and from congested state to a jamming one, respectively. The minimal current appears in intermediate values of τ s . Furthermore there exist, a critical value of τ f above which the meta-stability and hysteresis appear. The effects of disorder due to drivers behaviors have been introduced through a random delay time τ allowing the car to reach its optimal velocity traffic flow models with open boundaries. In the absence of the variation of the delay time Δτ, it is found that the transition from unstable to meta-stable and from meta-stable to stable state occur under the effect of the injecting and the extracting rate probabilities α and β respectively. Moreover, the perturbation of the traffic flow behavior due to the off-ramp has been studied using numerical simulations in the one dimensional cellular automaton traffic flow model with open boundaries. When the off-ramp is located between two critical positions i c1 and i c2 the current remains constant (plateau) for β0c1 < β0 < β0c2, and the density undergoes two successive first order transitions: from high density to plateau current phase and from average density to the low one. In the case of two off-ramps, these transitions occur only when the distance between ramps, is smaller than a critical value.

PACS

45.70.Vn Granular models of complex systems; traffic flow 45.50.-j ynamics and kinematics of a particle and a system of particles 45.70.Mg Granular flow: mixing, segregation and stratification 47.57.Gc Granular flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Nagel, M. Schreckenberg, I. Phys. I (France) 2, (1992)Google Scholar
  2. 2.
    O. Biham, A.A. Middleton, D. Levine, J. Phys. Rev. A 46, R6124 (1992)CrossRefADSGoogle Scholar
  3. 3.
    S. Wolfram, Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986)MATHGoogle Scholar
  4. 4.
    D. Helbing, Phys. Rev. E 55, R25 (1997)CrossRefADSGoogle Scholar
  5. 5.
    T.M. Ligget, Interacting Particle Systems (Springer, New York, 1985)Google Scholar
  6. 6.
    H. Spohn, Large Scale Dynamics of Interacting Particles (Spinger, Berlin, 1991)MATHGoogle Scholar
  7. 7.
    S.A. Janowsky, J.L. Lebowitz, Phys. Rev. A 45, 618 (1992)CrossRefADSGoogle Scholar
  8. 8.
    M. Bramson, J. Stat. Phys. 51, 863 (1988)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    B. Derrida, E. Domany, D. Mukamel, J. Stat. Phys. 69, 667 (1992)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    G. Schutz, S. Sandow, Phys. Rev. E 49, 2726 (1994)CrossRefADSGoogle Scholar
  11. 11.
    B. Derrida, M.R. Evans, V. Hakim, V. Pasquier, J. Phys. A 26, 1493 (1993)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Schadshneider, M. Schrekenberg, J. Phys. A 26, L679 (1993)CrossRefADSGoogle Scholar
  13. 13.
    M. Schrekenberg, A. Schadschneider, K. Nagel, N. lto, Phys. Rev. E 51, 2939 (1995)CrossRefADSGoogle Scholar
  14. 14.
    G. Schutz, J. Stat. Phys. 71, 471 (1993)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Z. Csahok, T. Vicsek, J. Phys. A 27, LS91 (1994)CrossRefGoogle Scholar
  16. 16.
    D.V. Ktitarev, D. Chowdhury, D.E. Wolf, J. Phys. A 30, L221 (1997)MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    T. Nagatani, Phys. Rev. E 51, 922 (1995)CrossRefADSGoogle Scholar
  18. 18.
    J. Krug, P.A. Ferrari, J. Phys. A 29, L46S (1996)Google Scholar
  19. 19.
    M.R. Evans, J. Phys. A 30, 5669 (1997)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    M. Bengrine, A. Benyoussef, H. Ez-Zahraouy, M. Loulidi, J. Krug, F. Mhirech, J. Phys. A 32, 2527 (1999); M. Bengrine, A. Benyoussef, H. Ez-Zahraouy, F. Mhirech, Phys. Lett. A 253, 135 (1999)CrossRefADSGoogle Scholar
  21. 21.
    A. Benyoussef, H. Chakib, H. Ez-Zahraouy, Eur. Phys. J. B 8, 275 (1999)CrossRefADSGoogle Scholar
  22. 22.
    A. Benyoussef, H. Chakib, H. Ez-Zahraouy, Physica Scripta 60, 202 (1999)CrossRefADSGoogle Scholar
  23. 23.
    H. Ez-Zahraouy, K. Jetto, A. Benyoussef, Eur. Phys. J. B 40, 111 (2004)CrossRefADSGoogle Scholar
  24. 24.
    N. Mitarai, H. Nakanishi, J. Phys. Soc. Jpn 68, 4857 (1999)CrossRefGoogle Scholar
  25. 25.
    T. Nagatani, Phys. Rev. E 61, 3564 (2000)CrossRefADSGoogle Scholar
  26. 26.
    T. Nagatani, Phys. Rev. E 61, 3534 (2000)CrossRefADSGoogle Scholar
  27. 27.
    T. Nagatani, Phys. Rev. E 60, 6395 (1999)CrossRefADSGoogle Scholar
  28. 28.
    T. Nagatani, Physica A 284, 405 (2000)CrossRefADSGoogle Scholar
  29. 29.
    T. Nagatani, Physica A 253, 353 (1998); T. Nagatani, Physica A 261, 599 (1998)CrossRefADSGoogle Scholar
  30. 30.
    B.S. Kerner, S.L. Klenov, J. Phys. A: Math. Gen. 39, 1775 (2006); B.S. Kerner, The Physics of Traffic (Springer, Berlin, New York, 2004)MATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    H. Ez-Zahraouy, Z. Benrihane, A. Benyoussef, Eur. Phys. J. B 36, 289 (2003)CrossRefADSGoogle Scholar
  32. 32.
    H. Ez-Zahraouy, Z. Benrihane, A. Benyoussef, Int. J. Mod. Phys. C 16, 1461 (2005)CrossRefADSGoogle Scholar
  33. 33.
    H. Ez-Zahraouy, K. Jetto, A. Benyoussef, Chin. J. Phys. 44, 486 (2006)MathSciNetGoogle Scholar
  34. 34.
    B.S. Kerner, H. Rehborn, Phys. Rev. E 53, R1297 (1996); B.S. Kerner, H. Rehborn, Phys. Rev. E 53, R4275 (1996); B.S. Kerner, H. Rehborn, Phys. Rev. Lett. 79, 4043 (1997); B.S. Kerner, Phys. Rev. Lett. 81, 3797 (1998); B.S. Kerner, J. Phys. A 33, L221 (2000)CrossRefADSGoogle Scholar
  35. 35.
    H.Y. Lee, H.W. Lee, D. Kim, Phys. Rev. E 62, 4737 (2000)CrossRefADSGoogle Scholar
  36. 36.
    D. Helbing, Phys. Rev. E 55, R25 (1997); D. Helbing, Phys. Rev. E 55, 3735 (1997); M. Treiber, D. Helbing, J. Phys. A 32, L17 (1999)CrossRefADSGoogle Scholar
  37. 37.
    M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 62, 1805 (2000)CrossRefADSGoogle Scholar
  38. 38.
    H.Y. Lee, H.W. Lee, D. Kim, Phys. Rev. Lett. 81, 1130 (1998); H.Y Lee, H.W Lee, D. Kim, Phys. Rev. E 59, 5101 (1999)CrossRefADSGoogle Scholar
  39. 39.
    D. Helbing, M. Treiber, Phys. Rev. Lett. 81, 3042 (1998); D. Helbing, A. Hennecke, M. Treiber, Phys. Rev. Lett. 82, 4360 (1999)CrossRefADSGoogle Scholar
  40. 40.
    P. Berg, A. Woods, Phys. Rev. E 64, 035602 (2001)CrossRefADSGoogle Scholar
  41. 41.
    V. Popkov, L. Santen, A. Schadschneider, G.M. Schütz, J. Phys. A 34, L45 (2001)MATHCrossRefADSGoogle Scholar
  42. 42.
    H. Ez-Zahraouy, Z. Benrihane, A. Benyoussef, Int. J. Mod. Phys. B 18, 2347 (2005)CrossRefADSGoogle Scholar
  43. 43.
    A. Mhirech, H. Ez-Zahraouy, A. Alaoui Ismaili, e-print arXiv: cond-mat/0606803; A. Mhirech, A. Alaoui Ismaili, H. Ez-Zahraouy, e-print arXiv: Physics/0612255Google Scholar
  44. 44.
    S. Sandow, Phys. Rev. E 50, 2660 (1994)CrossRefADSGoogle Scholar
  45. 45.
    F.H.L. Essler, V. Rittenberg, J. Phys. A: Math Gen. 29, 3375 (1996)MATHCrossRefADSMathSciNetGoogle Scholar
  46. 46.
    B. Derrida, S.A. Janowsky, J.L. Lebowitz, E.R. Speer, Europhys. Lett. 22, 651 (1993)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.LMPHE, Département de Physique, Faculté des SciencesUniversité Mohammed V-AgdalRabatMorocco

Personalised recommendations