Advertisement

The European Physical Journal B

, Volume 61, Issue 4, pp 499–503 | Cite as

Impact of network activity on noise delayed spiking for a Hodgkin-Huxley model

Interdisciplinary Physics

Abstract.

In a Hodgkin-Huxley neuron model driven just above threshold, external noise can increase both jitter and latency of the first spike, an effect called “noise delayed decay” (NDD). This phenomenon is important when considering how neuronal information is represented, thus by the precise timing of spikes or by their rate. We examine how NDD can be affected by network activity by varying the model's membrane time constant, τm. We show that NDD is significant for small τm or high network activity, and decreases for large τm, or low network activity. Our results suggest that for inputs just above threshold, the activity of the network constrains the neuronal coding strategy due to, at least in part, the NDD effect.

PACS.

05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 87.10.+e General theory and mathematical aspects 87.16.-b Subcellular structure and processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.D. Adrian, J. Physiol. (Lond.) 61, 49 (1926) Google Scholar
  2. A.P. Georgopoulos, A.B. Schwartz, R.E Keftner, Science 233, 1416 (1986) CrossRefADSGoogle Scholar
  3. M. Abeles, Corticonics: Neural Circuitry of the Cerebral Cortex (Cambridge, Cambridge University Press, 1991) Google Scholar
  4. M. Abeles, H. Bergman, E. Magalit, A. Vaadia, J. Neurophysiol. 70, 1629 (1993) Google Scholar
  5. F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spikes - Exploring the Neural Code (Cambridge, MIT Press, 1996) Google Scholar
  6. W. Bair, C. Koch, Neural Comput. 8, 1185 (1996) Google Scholar
  7. S. Panzeri, R.S. Petersen, S.R. Schultz, M. Lebedev, M.E. Diamond, Neuron 29, 769 (2001) CrossRefGoogle Scholar
  8. P. Reinagel, R.C. Reid, J. Neurocsi. 20, 5392 (2000) Google Scholar
  9. E.V. Pankratova, A.V. Polovinkin, E. Mosekilde, Eur. Phys. J. B 45, 391 (2005) CrossRefADSGoogle Scholar
  10. N.V. Agudov, A.N. Malakhov, Int. J. Bifurcati. Chaos 5, 531 (1995); A.N. Malakhov, A.L. Pankratov, Physica C 269, 46 (1996); R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996); N.V. Agudov, Phys. Rev. E 57, 2618 (1998), N.V. Agudov, A.N. Malakhov, Phys. Rev. E 60, 6333 (1999) CrossRefGoogle Scholar
  11. A.U. Larkman, J. Comp. Neurol. 306, 332 (1991) CrossRefGoogle Scholar
  12. Ö. Bernander, R.J. Douglas, K.A.C. Martin, C. Koch, Proc. Natl. Acad. Sci. USA 88, 11569 (1991) CrossRefADSGoogle Scholar
  13. M. Rapp, Y. Yarom, I. Segev, Neural Comput. 4, 518 (1992) CrossRefGoogle Scholar
  14. A.L. Hodgkin, A.F. Huxley, J. Physiol. (Lond.) 117, 500 (1952) Google Scholar
  15. B.W. Connors, M.J. Gutnick, J. Prince, J. Neurophysiol. 48, 1302 (1982) Google Scholar
  16. B. Delord, A.J. Klaassen, Y. Burnod, R. Costalat, E. Guigon, NeuroReport 8, 1019 (1997) CrossRefGoogle Scholar
  17. L.J. Borg-Graham, C. Monier, Y.F. Fregnac, Nature 389, 369 (1998) ADSGoogle Scholar
  18. S. Schreiber, J.M. Fellous, P. Tiesinga, T.J. Sejnowski, J. Neurophysiol. 91, 194 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringZonguldak Karaelmas University, Engineering FacultyZonguldakTurkey
  2. 2.Laboratory of Neurophysics and Physiology, UMR 8119 CNRS, Université Paris DescartesParisFrance

Personalised recommendations