Advertisement

The European Physical Journal B

, Volume 61, Issue 4, pp 427–432 | Cite as

Correlated electron current and temperature dependence of the conductance of a quantum point contact

  • C. Sloggett
  • A. I. Milstein
  • O. P. Sushkov
Mesoscopic and Nanoscale Systems

Abstract.

We investigate finite temperature corrections to the Landauer formula due to electron–electron interaction within the quantum point contact. When the Fermi level is close to the barrier height, the conducting wavefunctions become peaked on the barrier, enhancing the electron–electron interaction. At the same time, away from the contact the interaction is strongly suppressed by screening. To describe electron transport we formulate and solve a kinetic equation for the density matrix of electrons. The correction to the conductance G is negative and strongly enhanced in the region 0.5 × 2e2/h ≤ G ≤ 1.0 × 2e2/h. Our results for conductance agree with the so-called “0.7 structure” observed in experiments.

PACS.

73.23.-b Electronic transport in mesoscopic systems 72.10.-d Theory of electronic transport; scattering mechanisms 73.21.Hb Quantum wires 73.63.Rt Nanoscale contacts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Wharam et al., J. Phys. C 21, L209 (1988) Google Scholar
  2. B.J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988) CrossRefADSGoogle Scholar
  3. R. Landauer, Phys. Lett. A 85, 91 (1981) CrossRefADSGoogle Scholar
  4. M. Büttiker, Phys. Rev. B 41, 7906 (1990) CrossRefADSGoogle Scholar
  5. K.J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996) CrossRefADSGoogle Scholar
  6. K.J. Thomas et al., Phys. Rev. B 58, 4846 (1998) CrossRefADSGoogle Scholar
  7. A. Kristensen et al., Phys. Rev. B 62, 10950 (2000) CrossRefGoogle Scholar
  8. D.J. Reilly et al., Phys. Rev. B 63, 121311 (2001) CrossRefADSGoogle Scholar
  9. S.M. Cronenwett et al., Phys. Rev. Lett. 88, 226805 (2002) CrossRefADSGoogle Scholar
  10. P. Roche et al., Phys. Rev. Lett. 93, 116602 (2004) CrossRefADSGoogle Scholar
  11. R. Danneau et al., Appl. Phys. Lett. 88, 012107 (2006) CrossRefADSGoogle Scholar
  12. Chuan-Kui Wang, K.-F. Berggren, Phys. Rev. B 54, 14257 (1996); Chuan-Kui Wang, K.-F. Berggren, Phys. Rev. B 57, 4552 (1998) CrossRefADSGoogle Scholar
  13. L. Calmels, A. Gold, Solid State Commun. 106, 139 (1998) CrossRefADSGoogle Scholar
  14. N. Zabala, M.J. Puska, R.M. Nieminen, Phys. Rev. Lett. 80, 3336 (1998) CrossRefADSGoogle Scholar
  15. H. Bruus, V.V. Cherepanov, K. Flensberg, Physica E 10, 97 (2001) CrossRefADSGoogle Scholar
  16. A.A. Starikov, I.I. Yakimenko, K.-F. Berggren, Phys. Rev. B 67, 235319 (2003) CrossRefADSGoogle Scholar
  17. D.J. Reilly, Phys. Rev. B 72, 033309 (2005) CrossRefADSGoogle Scholar
  18. B. Spivak, F. Zhou, Phys. Rev. B 61, 16730 (2000) CrossRefADSGoogle Scholar
  19. O.P. Sushkov, Phys. Rev. B 64, 155319 (2001); 67, 195318 (2003) CrossRefADSGoogle Scholar
  20. Y. Meir, K. Hirose, N.S. Wingreen, Phys. Rev. Lett. 89, 196802 (2002); K. Hirose, Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 90, 026804 (2003) CrossRefADSGoogle Scholar
  21. P.S. Cornaglia, C.A. Balseiro, Europhys. Lett., 67, 634 (2004) Google Scholar
  22. G. Seelig, K.A. Matveev, Phys. Rev. Lett. 90, 176804 (2003) CrossRefADSGoogle Scholar
  23. R.A. Molina et al., Phys. Rev. B 67, 235306 (2003) CrossRefGoogle Scholar
  24. V. Meden, U. Schollwoeck, Phys. Rev. B 67, 193303 (2003) CrossRefADSGoogle Scholar
  25. A. Bohr, B. Mottelson, Nuclear Structure (World Scientific, Singapore, 1998), Vol. 2, pp. 372–375 Google Scholar
  26. P.A. Wolff, Phys. Rev. 15, 1030 (1961) CrossRefADSGoogle Scholar
  27. D. Maslov, M. Stone, Phys. Rev. B 52, R5539 (1995) Google Scholar
  28. M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990) CrossRefADSGoogle Scholar
  29. E.M. Lifshitz, L P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, New York, 1981) Google Scholar
  30. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, New York, 1965) Google Scholar
  31. K.A. Brueckner, C.A. Levinson, Phys. Rev. 97, 1344 (1955) MATHCrossRefADSGoogle Scholar
  32. V.A. Dzuba, V.V. Flambaum, O.P. Sushkov, Phys. Lett. A 140, 493 (1989); V.A. Dzuba, V.V. Flambaum, O.P. Sushkov, Phys. Lett. A 141, 147 (1989) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of Physics, University of New South WalesSydneyAustralia
  2. 2.Budker Institute of Nuclear PhysicsNovosibirskRussia

Personalised recommendations