The European Physical Journal B

, Volume 61, Issue 1, pp 47–58 | Cite as

Hydrodynamic interaction between two rotating tori

Physics of Fluids

Abstract.

The hydrodynamic interactions between two rotating tori is studied. Two kinds of problems are addressed. The interaction between two force free tori is examined, for co and counter rotating cases, which should be relevant in the case of swimming of two toroidal animals and form the basis for interaction of a swarm of such swimmers, apart from the dynamics of a collection of stiff polymer rings. The second problem is the case of two non-translating rotating tori, a possible configuration in toroidal mixers for microfluidic devices. In the former case, analytical expression for translational velocity shows good agreement with the theory in the far field case and show a strong reduction in the velocities in the lubrication limit for the co-rotating case. The velocities are found to monotonically reduce to zero in the case of counter-rotating tori. For the latter case, the expression for velocity field is derived the net force acting on the torus is analytically calculated. The comparison with numerical results is encouraging both in the case of co as well as counter-rotation. The expressions derived for velocities should be useful in estimating pseudo-potentials between such pairs.

PACS.

47.85.Dh Hydrodynamics, hydraulics, hydrostatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.I. Taylor, Proc. Roy. Soc. Lond., Ser. A 209, 447 (1951) MATHGoogle Scholar
  2. J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952) MATHCrossRefMathSciNetGoogle Scholar
  3. E.M. Purcell, Amer. J. Phys. 45, 3 (1977) CrossRefADSGoogle Scholar
  4. J. Avron, O. Gat, O. Kenneth, Phys. Rev. Lett. 93, 186001 (2004) CrossRefADSGoogle Scholar
  5. N. Ali, R. Golestanian, J. Phys.: Condens. Matter 17, S1203 (2005) Google Scholar
  6. R. Dreyfus, J. Baudry, M. Roper, M. Fermigier, H. Stone, J. Bibette, Nature 6, 862 (2005) CrossRefADSGoogle Scholar
  7. I. Kulic, R. Thaokar, H. Schiessel, Europhys. Lett. 72, 527 (2005) CrossRefADSGoogle Scholar
  8. I.M. Kulic, R. Thaokar, H. Schiessel, J. Phys.: Condens. Matter 17, S3965 (2005) Google Scholar
  9. R.M. Thaokar, H. Schiessel, I.M. Kulic, EPJB p. Accepted (2007) Google Scholar
  10. A.T. Chwang, W.S. Hwang, Physics of Fluids 2, 1309 (1990) MATHCrossRefADSMathSciNetGoogle Scholar
  11. N.A. Hill, T.J. Pedley, Fluid Dynamics Research 37, 1 (2005) CrossRefADSMathSciNetMATHGoogle Scholar
  12. I.M. Janosi, T. Tel, D.E. Wolf, J. Gallas, Phys. Rev. E 56, 2858 (1997) CrossRefADSGoogle Scholar
  13. Y. Huang, N. Schorghofer, E. Ching, Europhys. Lett. 52, 399 (2000) CrossRefADSGoogle Scholar
  14. G. Taylor, Proc. Roy. Soc. Lond., Ser. A. 211, 225 (1952) MATHGoogle Scholar
  15. E. Guyon, J. Hulin, L. Petit, C. Mitescu, Physical hydrodynamics (Oxford University Press, Oxford, 2001) Google Scholar
  16. D. Guell, H. Brenner, R. Frankel, H. Hartman, J. Theor. Biol 135, 525 (1988) CrossRefGoogle Scholar
  17. M. Ramia, N. Phan-Thein, Biophysical J 65, 755 (1993) CrossRefADSGoogle Scholar
  18. R. Nasseri, N. Phan-Thein, Comput. Mech. 20, 551 (1997) MATHCrossRefGoogle Scholar
  19. J. Lega, T. Passot, Nonlinearity 20, C1 (2007) Google Scholar
  20. H. Jiang, T.R. Osborn, C. Meneveau, J. Plank. Res 24, 235 (24) CrossRefGoogle Scholar
  21. T. Ishikawa, M. Simmonds, T. Pedley, J. Fluid Mech. 568, 119 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  22. C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow (Cambridge University Press, Cambridge, 1992) Google Scholar
  23. S. Kim, S. Kariala, Microhydrodynamics (Butterworth-Heinemann, MA, USA, 1991) Google Scholar
  24. G.K. Youngren, A. Acrivos, J. Fluid Mech. 6, 377 (1975) CrossRefADSMathSciNetGoogle Scholar
  25. S. Sukumaran, U. Seifer, Phys. Rev. E. 64, 011916 (2001) CrossRefADSGoogle Scholar
  26. J. Alder, W.W. Tso, Science 184, 1292 (1974) CrossRefADSGoogle Scholar
  27. M. Abramowitz, I. Stegun, Handbook of mathematical functions (Dover, New York, 1964) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of chemical engineeringIndian Institute of TechnologyMumbaiIndia

Personalised recommendations