Skip to main content
Log in

Transient domain wall displacement under spin-polarized current pulses

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

This paper investigates the non steady-state displacement of magnetic domain walls in a nanostrip submitted to a time-dependent spin-polarized current flowing along the nanostrip. First, numerical micromagnetic simulations show that a domain wall can move under application of a current pulse, and that the displacement resulting from a conversion of the domain wall structure is quantized. The numerical findings are subsequently explained in the framework of simplified analytic models, namely the 1D model and the point-core vortex model. We then introduce the concept of an angle linked to the magnetization of a general domain wall, and show that it allows understanding the transient phenomena quite generally. Simple analytic formulas are derived and compared to experiments. For this, charts are given for the key parameters of the domain wall mechanics, as obtained from numerical micromagnetic simulations. We finally discuss the limitations of this work, by looking at the influence of temperature elevation under current, presence of a non-adiabatic term, and of disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • L. Berger, J. Appl. Phys. 49, 2156 (1978)

    Article  ADS  Google Scholar 

  • L. Berger, J. Appl. Phys. 55, 1954 (1984)

    Article  ADS  Google Scholar 

  • T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, T. Shinjo, Science 284, 468 (1999)

    Article  ADS  Google Scholar 

  • D. Atkinson, D. Allwood, G. Xiong, M. Cooke, C. Faulkner, R. Cowburn, Nature Mater. 2, 85 (2003)

    Article  ADS  Google Scholar 

  • M. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y. Bazaliy, S. Parkin, Phys. Rev. Lett. 98, 037204 (2007)

    Article  ADS  Google Scholar 

  • N. Vernier, D. Allwood, D. Atkinson, M. Cooke, R. Cowburn, Europhys. Lett. 65, 526 (2004)

    Article  ADS  Google Scholar 

  • A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)

    Article  ADS  Google Scholar 

  • M. Kläui, P. Jubert, R. Allenspach, A. Bischof, J. Bland, G. Faini, U. Rüdiger, C. Vaz, L. Vila, C. Vouille, Phys. Rev. Lett. 95, 026601 (2005)

    Article  ADS  Google Scholar 

  • P.O. Jubert, M. Kläui, A. Bischof, U. Rüdiger, R. Allenspach, J. Appl. Phys. 99, 08G523 (2006)

    Article  Google Scholar 

  • C. Lim, T. Devolder, C. Chappert, J. Grollier, V. Cros, A. Vaurès, A. Fert, G. Faini, Appl. Phys. Lett. 84, 2820 (2004)

    Article  ADS  Google Scholar 

  • J. Miltat, G. Albuquerque, A. Thiaville, Spin Dynamics in Confined Magnetic Structures I (Springer, Berlin, 2002), pp. 1–33

  • A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69, 990 (2005)

    Article  ADS  Google Scholar 

  • S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Article  ADS  Google Scholar 

  • S. Barnes, S. Maekawa, Phys. Rev. Lett. 95, 107204 (2005)

    Article  ADS  Google Scholar 

  • M. Stiles, W. Saslow, M. Donahue, A. Zangwill, Phys. Rev. B 75, 214423 (2007)

    Article  ADS  Google Scholar 

  • Y. Nakatani, A. Thiaville, J. Miltat, Nature Mater. 2, 521 (2003)

    Article  ADS  Google Scholar 

  • R. McMichael, M. Donahue, IEEE Trans. Magn. 33, 4167 (1997)

    Article  Google Scholar 

  • Y. Nakatani, A. Thiaville, J. Miltat, J. Magn. Magn. Mater. 290–291, 750 (2005)

    Google Scholar 

  • A. Thiaville, Y. Nakatani, J. Miltat, N. Vernier, J. Appl. Phys. 95, 7049 (2004)

    Article  ADS  Google Scholar 

  • G. Tatara, H. Kohno, Phys. Rev. Lett. 92, 086601 (2004)

    Article  ADS  Google Scholar 

  • A. Thiaville, J. García, J. Miltat, J. Magn. Magn. Mater. 242–245, 1061 (2002)

    Google Scholar 

  • L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, S. Parkin, Nature 443, 197 (2006)

    Article  ADS  Google Scholar 

  • A. Thiaville, Y. Nakatani, Spin Dynamics in Confined Magnetic Structures III (Springer, Berlin, 2006), pp. 161–206

  • D. Porter, M. Donahue, J. Appl. Phys. 95, 6729 (2004)

    Article  ADS  Google Scholar 

  • J. Shibata (2006), private communication

  • A. Thiele, Phys. Rev. Lett. 30, 230 (1973)

    Article  ADS  Google Scholar 

  • D. Huber, J. Appl. Phys. 53, 1899 (1982)

    Article  ADS  Google Scholar 

  • J. Shibata, Y. Nakatani, G. Tatara, H. Kohno, Y. Otani, Phys. Rev. B 73, 020403(R) (2006)

    Article  ADS  Google Scholar 

  • K.Y. Guslienko, X. Han, D. Keavney, R. Divan, S. Bader, Phys. Rev. Lett. 96, 067205 (2006)

    Article  ADS  Google Scholar 

  • J. He, Z. Li, S. Zhang, J. Appl. Phys. 99, 08G509 (2006)

    Google Scholar 

  • W. Döring, Z. Naturforschg. 3a, 373 (1948)

    Google Scholar 

  • J. Slonczewski, Physics of Magnetic Materials (World Scientific, Singapore, 1985)

  • G. Wysin, Phys. Rev. B 54, 15156 (1996)

    Article  ADS  Google Scholar 

  • The TW 1D model as well as the VW point core model express the DW Döring mass as mD = (μ0 Ms / γ0) 2 S ατ/ Δ0 T, in terms of the two micromagnetic quantities α τ and Δ0 T that we consider in this paper, thus allowing direct evaluation of this mass. This relation shows also that, for the same nanostrip sizes, the VW can bee 100 times heavier than the TW (see Fig. 7).

  • Quantitatively, the values of Dxx, Dyy and Dxy, in units of (μ0 Ms / γ0) 2 πh, are 3.80, 2.79 and ± 0.35 for the VW, 1.94, 0.80 and ± 0.51 for the ATW, and 1.73, 0.40 and 0 for the STW in a 240 ×10 nm2 nanostrip, respectively. Thus Dxx is dominant for a TW, and Dxx ≈Dyy dominate for a VW.

  • A. Thiele, J. Appl. Phys. 47, 2759 (1976)

    Article  ADS  Google Scholar 

  • J. Slonczewski, J. Magn. Magn. Mater. 12, 108 (1979)

    Article  ADS  Google Scholar 

  • A. Malozemoff, J. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic Press, New York, 1979)

  • Z. Li, S. Zhang, Phys. Rev. Lett. 92, 207203 (2004)

    Article  ADS  Google Scholar 

  • M. Kläui, C. Vaz, J. Bland, L. Heyderman, F. Nolting, A. Pavlovska, E. Bauer, S. Cherifi, S. Heun, A. Locatelli, Appl. Phys. Lett. 85, 5637 (2004)

    Article  ADS  Google Scholar 

  • M. Laufenberg, D. Backes, W. Bührer, D. Bedau, M. Kläui, U. Rüdiger, C. Vaz, J. Bland, L. Heyderman, F. Nolting et al., Appl. Phys. Lett. 88, 052507 (2006)

    Article  Google Scholar 

  • K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, T. Ono, Nature Mater. 6, 269 (2007)

    Article  ADS  Google Scholar 

  • A. Yamaguchi, S. Nasu, H. Tanigawa, T. Ono, K. Miyake, K. Mibu, T. Shinjo, Appl. Phys. Lett. 86, 012511 (2005)

    Article  ADS  Google Scholar 

  • A. Yamaguchi, K. Yano, H. Tanigawa, S. Kasai, T. Ono, Jpn. J. Appl. Phys. 45, 3850 (2006)

    Article  ADS  Google Scholar 

  • R. Duine, A. Núñez, A. MacDonald, Phys. Rev. Lett. 98, 056605 (2007)

    Article  ADS  Google Scholar 

  • E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan, O. Alejos, Phys. Rev. B 75, 174409 (2007)

    Article  ADS  Google Scholar 

  • A. Hubert, R. Schäfer, Magnetic Domains (Springer Verlag, Berlin, 1998)

  • L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, S. Parkin, Science 315, 1553 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Thiaville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiaville, A., Nakatani, Y., Piéchon, F. et al. Transient domain wall displacement under spin-polarized current pulses. Eur. Phys. J. B 60, 15–27 (2007). https://doi.org/10.1140/epjb/e2007-00320-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2007-00320-3

PACS.

Navigation