The European Physical Journal B

, Volume 59, Issue 1, pp 109–114 | Cite as

Spatiotemporal chaos control in two-wave driven systems

  • G. Tang
  • G. Hu
Interdisciplinary Physics


Spatiotemporal chaos control is considered by taking a one-dimensional driven/damped nonlinear drift-wave equation as a model. We apply an additional sinusoidal wave to suppress spatiotemporal chaos, and the system becomes a two-sinusoidal-wave driven system (the original driving wave with frequency ω and an additional controlling wave with frequency Ω). Numerical simulations show that when the frequency of the controlling wave is in the proper range, spatiotemporal chaos can be modified into a regular state where the amplitudes of all modes vary periodically with frequency Ω-ω while the phases of all modes evolve quasi-periodically with a running frequency Ω overlapped by a small modulation of frequency Ω-ω. The physical reason for this peculiar phenomenon is attributed to a frequency entrainment in the competition of the two external waves.


05.45.Gg Control of chaos, applications of chaos 47.27.Rc Turbulence control 52.35.Kt Drift waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. O. Lüthje, S. Wolff, G. Pfister, Phys. Rev. Lett. 86, 1745 (2001) CrossRefADSGoogle Scholar
  2. S. Guan, G.W. Wei, C.H. Lai, Phys. Rev. E 69, 66214 (2004) CrossRefADSGoogle Scholar
  3. G. Tang, G. Hu, Phys. Rev. E 73, 56307 (2006) CrossRefADSGoogle Scholar
  4. E. Gravier, X. Caron, G. Bonhomme, T. Pierre, Phys. Plasma 6, 1670 (1999) CrossRefADSMathSciNetGoogle Scholar
  5. T. Klinger, C. Schröder, D. Block, F. Greiner, A. Piel, G. Bonhomme, V. Naulin, Phys. Plasma 8, 1961 (2001) CrossRefADSGoogle Scholar
  6. C.F. Figarella, A.K. Sen, S. Benkadda, P Beyer, X. Garbet, Plasma Phys. Control. Fusion 45, 1297 (2003) CrossRefADSGoogle Scholar
  7. L. Pastur, L. Gostiaux, U. Bortolozzo, S. Boccaletti, P.L. Ramazza, Phys. Rev. Lett. 93, 63902 (2004) CrossRefADSGoogle Scholar
  8. V. Petrov, M.J. Crowley, K. Showalter, Phys. Rev. Lett. 72, 2955 (1994) CrossRefADSGoogle Scholar
  9. C.K. Tung, C.K. Chan, Phys. Rev. Lett. 89, 248302 (2002) CrossRefADSGoogle Scholar
  10. K. Hall, D.J. Christini, M. Tremblay, J.J. Collins, L. Glass, J. Billette, Phys. Rev. Lett. 78, 4518 (1997) CrossRefADSGoogle Scholar
  11. He Kaifen, A. Salat, Plasma Phys. Control. Fusion 31, 123 (1989) CrossRefADSMathSciNetGoogle Scholar
  12. Kaifen He, Phys. Rev. E 59, 5278 (1999) CrossRefADSGoogle Scholar
  13. H. Guang, H. Kaifen, Phys. Rev. Lett. 71, 3794 (1993) CrossRefADSGoogle Scholar
  14. Hu Kaifen, Hu. Gang, Phys. Rev. E 53, 2271 (1996) CrossRefADSGoogle Scholar
  15. G. Tang, K. He, G. Hu, Phys. Rev. E 73, 56303 (2006) CrossRefADSGoogle Scholar
  16. Z. Qu, G. Hu, G. Yang, G. Qin, Phys. Rev. Lett. 74, 1736 (1995) CrossRefADSGoogle Scholar
  17. R. Chacón, Phys. Rev. Lett. 86, 1737 (2001) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Normal UniversityBeijingP.R. China
  2. 2.College of Physics and Electronic Engineering, Guangxi Normal UniversityGuilinP.R. China
  3. 3.Beijing-Hong Kong-Singapore Joint center of Nonlinear and Complex Systems Beijing Normal University Branch-BeijingBeijingP.R. China

Personalised recommendations