Statistical analysis of shear cracks on rock surfaces

Solids and Liquids

Abstract.

A set of 3873 cracks on exposed granite rock surfaces are analyzed in order to investigate possible fracture mechanisms. The fracture patterns are compared with the Mohr-Coulomb and the Roscoe fracture models, which can be combined into a single fracture scheme. A third model for comparison is based on interacting `penny-shaped' micro cracks introduced by Healy et al. [Nature 439, 64 (2006)]. The former models predict a bimodal fracture angle distribution, with two narrow peaks separated by 60-90 symmetrically on both sides of the direction of the largest principal stress, while the latter predicts a single broader peak in the same direction with standard deviation in the range 15-20. The crack length distributions seem consistent with numerical simulation, whereas the fracture patterns are Euclidean rather than fractal. The statistical analyses indicate that none of the models fully describe the fracture patterns. It seems that natural shear fractures easily become a complex combination of different fracture mechanisms.

PACS.

62.20.Mk Fatigue, brittleness, fracture, and cracks 61.43.-j Disordered solids 

References

  1. A.A. Griffith, Phil. Trans. R. Soc. A 221, 163 (1921) ADSGoogle Scholar
  2. Statistical models for the fracture of disordered media, edited by H. Herrmann, S. Roux (North-Holland, Amsterdam, 1990) Google Scholar
  3. J. Fineberg, M. Marder, Phys. Rep., 313 (1999) Google Scholar
  4. J.A. Åström, Advances in Physics 55, 247 (2006) CrossRefGoogle Scholar
  5. J.M. Ramsey, F.M. Chester, Nature 428, 63 (2004) CrossRefADSGoogle Scholar
  6. K. Roscoe, Geotechnique 20, 170 (1970) Google Scholar
  7. G. Kirsch, Zeitschrift der Vereines Deutscher Ingenieure 42, 797 (1898) Google Scholar
  8. J. Arthur, T. Dunstan, Q. Al-Ani, A. Assadi, Geotechnique 27, 53 (1977) CrossRefGoogle Scholar
  9. D. Healy, R.R. Jones, R.E. Holdsworth, Nature 439, 64 (2006) CrossRefADSGoogle Scholar
  10. J.D. Eshelby, Proc. R. Soc. Lond. A 241, 376 (1957); J.D. Eshelby, Proc. R. Soc. Lond. A 252, 561 (1959) MATHADSMathSciNetCrossRefGoogle Scholar
  11. A.N.B. Poliakov, H.J. Herrmann, Geophys. Res. Lett. 21, 2143 (1994) CrossRefADSGoogle Scholar
  12. D.L. Turcotte, Fractals and chaos in geology and geophysics (Cambridge Univ. Press, 1997) Google Scholar
  13. The fracture patterns have been extracted by SKB ltd. which is the Swedish company responsible for nuclear waste management. Information on SKB and the Äspö Hard Rock Laboratory can be found under http://www.skb.se Google Scholar
  14. J. Hermanson, O. Forssberg, A. Fox, P. La Pointe, SKB-report: SKB R-05-45 (available at http://www.skb.se) Statistical model of fractures and deformation zones. Preliminary site description, Laxemar subarea, version 1.2 (2005) Google Scholar
  15. C. Darcel, P. Davy, O. Bour, J.-R. De Dreuzy, SKB-report: SKB R-04-76 (available at http://www.skb.se) Alternative DFN model based on initial site investigations at Simpevarp (2004) Google Scholar
  16. M.J. Zoback, V. Zoback, J. Mount, J. Eaton, J. Healy, Science 238, 1105 (1987) CrossRefADSGoogle Scholar
  17. J.A. Åström, H.J. Herrmann, J. Timonen, Eur. Phys. J. E 4, 273 (2001) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.CSC - IT-center for science, P.O. Box 405EsboFinland

Personalised recommendations