Advertisement

The European Physical Journal B

, Volume 55, Issue 4, pp 403–409 | Cite as

Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy

  • L. Gao
  • X. P. Yu
Solids and Liquids

Abstract.

We derive expressions for the effective nonlinear susceptibility tensors for both the second harmonic generation (SHG) and induced third harmonic generation (THG) of nonlinear composite materials, in which nondilute coated particles with radial dielectric anisotropy are randomly embedded in the linear host. Two types of coated particles are considered. The first is that the core possesses a second order nonlinear susceptibility and the shell is linear and radially anisotropic, while the second is that the core is linear with radial anisotropy and the shell has a second order nonlinear susceptibility. We observe greatly enhanced SHG and THG susceptibilities at several surface plasmon resonant frequencies. For the second model, due to the coating material being metallic, there exists two fundamental resonant frequencies ωc1 and ωc2, whose difference ωc2c1 is strongly dependent on the interfacial parameter and the radial dielectric anisotropy. Furthermore, in both systems, the adjustment of the dielectric anisotropy results in larger enhancement of both SHG and induced THG susceptibilities at surface plasmon resonant frequencies than the corresponding isotropic systems. Therefore, both the core-shell structure and the dielectric anisotropy play important roles in determining the nonlinear enhancement and the surface resonant frequencies.

PACS.

42.65.An Optical susceptibility, hyperpolarizability 42.79.Ry Gradient-index (GRIN) devices 72.20.Ht High-field and nonlinear effects 77.84.Lf Composite materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.I. Stegeman, in Contemporary Nonlinear Optics, edited by G.P. Agrawal, R.W. Boyd (Academic Press, Boston, 1992) Google Scholar
  2. V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Film (Springer-Verlag, Berlin, 2000) Google Scholar
  3. D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, D.C. Rogers, Science 286, 1523 (1999) CrossRefGoogle Scholar
  4. D. Stroud, V.E. Wood, J. Opt. Soc. Am. B 6, 778 (1989) ADSGoogle Scholar
  5. O. Levy, D.J. Bergman, D. Stroud, Phys. Rev. E 52, 3184 (1995) CrossRefADSGoogle Scholar
  6. D.J. Bergman, O. Levy, D. Stroud, Phys. Rev. B 49, 129 (1994) CrossRefADSGoogle Scholar
  7. L. Gao, L.P. Gu, Z.Y. Li, Phys. Rev. E 68, 066601 (2003) CrossRefADSGoogle Scholar
  8. P.M. Hui, Phys. Rev. B 49, 15344 (1994) CrossRefADSGoogle Scholar
  9. G.L. Fisher, R.W. Boyd, R.J. Gehr, S.A. Jenekhe, J.A. Osaheni, J.E. Sipe, L.A. Weller-Brophy, Phys. Rev. Lett. 74, 1871 (1995) CrossRefADSGoogle Scholar
  10. K. Mallik, M. Mandal, N. Pradhan, T. Pal, Nano. Lett. 1, 319 (2001) CrossRefGoogle Scholar
  11. J.J. Schneider, Adv. Mater. 13, 529 (2001) CrossRefGoogle Scholar
  12. A.E. Neeves, M.H. Birnboim, J. Opt. Soc. Am. B 6, 787 (1989) ADSCrossRefGoogle Scholar
  13. P.M. Hui, C. Xu, D. Stroud, Phys. Rev. B 69, 014203 (2004) CrossRefADSGoogle Scholar
  14. L. Gao, Phys. Lett. A 318, 119 (2003) CrossRefADSGoogle Scholar
  15. Y. Yang, M. Hori, T. Hayakawa, M. Nogami, Surf. Sci. 579, 215 (2005) CrossRefADSGoogle Scholar
  16. G.W. Lu, B.L. Cheng, H. Shen, Y.J. Chen, T.H. Wang, Z.H. Chen, H.B. Lu, K.J. Jin, Y.L. Zhou, G.Z. Yang, Chem. Phys. Lett. 579, 397 (2005) CrossRefADSGoogle Scholar
  17. K.P. Yuen, M.F. Law, K.W. Yu, Ping Sheng, Phys. Rev. E 56, R1322 (1997) Google Scholar
  18. A.A. Lucas, L. Henrard, Ph. Lambin, Phys. Rev. B 49, 2888 (1994) CrossRefADSGoogle Scholar
  19. J.C.E. Sten, IEEE Trans. Dielectrics and Electrical Insulation 2, 360 (1995) CrossRefGoogle Scholar
  20. V.L. Sukhorukov, G. Meedt, M. Kurschner, U. Zimmermann, J. Electrostat. 50, 191 (2001) CrossRefGoogle Scholar
  21. P.M. Hui, D. Stroud, J. Appl. Phys. 82, 4740 (1997) CrossRefADSGoogle Scholar
  22. P.M. Hui, P. Cheng, D. Stroud, J. Appl. Phys. 84, 3451 (1998) CrossRefADSGoogle Scholar
  23. L. Gao, K.W. Yu, Phys. Rev. B 72, 075111 (2005) CrossRefADSGoogle Scholar
  24. L. Gao, Phys. Rev. E 71, 067601 (2005) CrossRefADSGoogle Scholar
  25. J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz, Phys. Rev. Lett. 83, 4045 (1999) CrossRefADSGoogle Scholar
  26. N. Yang, W.E. Angerer, A.G. Yodh, Phys. Rev. Lett. 87, 103902 (2001) CrossRefADSGoogle Scholar
  27. B. Lange, S.R. Aragon, J. Chem. Phys. 92, 4643 (1990) CrossRefADSGoogle Scholar
  28. D. Ugarte, Nature 359, 707 (1992) CrossRefADSGoogle Scholar
  29. A.A. Lucas, L. Henrard, Ph. Lambin, Phys. Rev. B. 49, 2888 (1993) CrossRefADSGoogle Scholar
  30. D. Ugarte, Chem. Phys. Lett. 209, 99 (1993) CrossRefADSGoogle Scholar
  31. I. Vilfan, M. Vilfan, S. Zumer, Phys. Rev. A. 40, 4724 (1989) CrossRefADSGoogle Scholar
  32. T. Ambjornsson, Phys. Rev. B. 73, 085412 (2006) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of PhysicsSuzhou UniversitySuzhouP.R. China

Personalised recommendations