Advertisement

The European Physical Journal B

, Volume 55, Issue 3, pp 237–251 | Cite as

Thermal radiation and near-field energy density of thin metallic films

Solids and Liquids

Abstract.

We study the properties of thermal radiation emitted by a thin dielectric slab, employing the framework of macroscopic fluctuational electrodynamics. Particular emphasis is given to the analytical construction of the required dyadic Green's functions. Based on these, general expressions are derived for both the system's Poynting vector, describing the intensity of propagating radiation, and its energy density, containing contributions from non-propagating modes which dominate the near-field regime. An extensive discussion is then given for thin metal films. It is shown that the radiative intensity is maximized for a certain film thickness, due to Fabry-Perot-like multiple reflections inside the film. The dependence of the near-field energy density on the distance from the film's surface is governed by an interplay of several length scales, and characterized by different exponents in different regimes. In particular, this energy density remains finite even for arbitrarily thin films. This unexpected feature is associated with the film's low-frequency surface plasmon polariton. Our results also serve as reference for current near-field experiments which search for deviations from the macroscopic approach.

PACS.

44.40.+a Thermal radiation 78.66.-w Optical properties of specific thin films 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 41.20.Jb Electromagnetic wave propagation; radiowave propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, J.-J. Greffet, Surf. Sci. Rep. 57, 59 (2005) CrossRefADSGoogle Scholar
  2. R. Carminati, J.-J. Greffet, Phys. Rev. Lett. 82, 1660 (1999) CrossRefADSGoogle Scholar
  3. A.V. Shchegrov, K. Joulain, R. Carminati, J.-J. Greffet, Phys. Rev. Lett. 85, 1548 (2000) CrossRefADSGoogle Scholar
  4. F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, Phys. Rev. B 69, 155412 (2004) CrossRefADSGoogle Scholar
  5. D. Polder, M. van Hove, Phys. Rev. B 4, 3303 (1971) CrossRefADSGoogle Scholar
  6. K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Phys. Rev. B 68, 245405 (2003) CrossRefADSGoogle Scholar
  7. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics (Springer, New York, 1989), Vol. 3 Google Scholar
  8. G.S. Agarwal, Phys. Rev. A 11, 230 (1975) CrossRefADSGoogle Scholar
  9. O.G. Kollyukh, A.I. Liptuga, V.O. Morozhenko, V.I. Pipa, Semiconductor Physics, Quantum Electronics & Optoelectronics 6, 210 (2003) Google Scholar
  10. A. Narayanaswamy, G. Chen, Appl. Phys. Lett. 82, 3544 (2003) CrossRefADSGoogle Scholar
  11. B.W. Ninham, V.A. Parsegian, J. Chem. Phys. 52, 4578 (1970) CrossRefGoogle Scholar
  12. B.W. Ninham, V.A. Parsegian, J. Chem. Phys. 53, 3398 (1970) CrossRefGoogle Scholar
  13. T. Varpula, T. Poutanen, J. Appl. Phys. 55, 4015 (1984) CrossRefADSGoogle Scholar
  14. M.S. Tomaš, Phys. Rev. A 51, 2545 (1995) CrossRefADSGoogle Scholar
  15. H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, Phys. Rev. A 55, 1497 (1997) CrossRefADSGoogle Scholar
  16. P.K. Rekdal, S. Scheel, P.L. Knight, E.A. Hinds, Phys. Rev. A 70, 013811 (2004) CrossRefADSGoogle Scholar
  17. Chen-To Tai, Dyadic Green's Functions in Electromagnetic Theory (Intext Educational Publishers, Scranton, 1971) Google Scholar
  18. J.A. Stratton, Electromagnetic Theory , New edn. (Wiley-IEEE Press, New York, 2007) Google Scholar
  19. K.L. Kliewer, R. Fuchs, Phys. Rev. 153, 498 (1967) CrossRefADSGoogle Scholar
  20. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt, Fort Worth, 1976) Google Scholar
  21. P. Grosse, Freie Elektronen in Festkörpern (Springer-Verlag, Berlin 1979) Google Scholar
  22. R.S. Kohlman, J. Joo, Y.Z. Wang, J.P. Pouget, H. Kaneko, T. Ishiguro, A.J. Epstein, Phys. Rev. Lett. 74, 773 (1995) CrossRefADSGoogle Scholar
  23. J.D. Jackson, Classical Electrodynamics , 3rd edn. (John Wiley, New York, 1998) Google Scholar
  24. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2, Landau and Lifshitz, Course of Theoretical Physics (Butterworth-Heinemann, Oxford, 1980), Vol. 9 Google Scholar
  25. M. Janowicz, D. Reddig, M. Holthaus, Phys. Rev. A 68, 043823 (2003) CrossRefADSGoogle Scholar
  26. I. Dorofeyev, H. Fuchs, K. Sobakinskaya, Central European Journal of Physics 3, 351 (2005) CrossRefGoogle Scholar
  27. S.-A. Biehs, D. Reddig, M. Holthaus, Thermal near fields of coated dielectrics (in preparation) Google Scholar
  28. W. Woltersdorff, Z. Phys. 91, 230 (1934) CrossRefGoogle Scholar
  29. S. Bauer, Am. J. Phys. 60, 257 (1992) CrossRefADSGoogle Scholar
  30. G.D. Mahan, D.T.F. Marple, Appl. Phys. Lett. 42, 219 (1983) CrossRefADSGoogle Scholar
  31. C. Henkel, K. Joulain, Appl. Phys. B 84, 61 (2006) CrossRefADSGoogle Scholar
  32. H. Raether, Excitation of Plasmons and Interband transitions by Electrons , Springer Tracts in Modern Physics 88 (Springer, Berlin, 1980) Google Scholar
  33. P. Fan, K. Yi, J.-D. Shao, Z.-X. Fan, J. Appl. Phys. 95, 2527 (2004) CrossRefADSGoogle Scholar
  34. I.A. Dorofeyev, J. Phys. D: Appl. Phys. 31, 600 (1998) CrossRefADSGoogle Scholar
  35. J.-P. Mulet, K. Joulain, R. Carminati, J.-J. Greffet, Appl. Phys. Lett. 78, 2931 (2001) CrossRefADSGoogle Scholar
  36. A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005) CrossRefADSGoogle Scholar
  37. I. Dorofeyev, The van der Waals interaction of microparticles with a substrate characterized by a nonlocal response (Preprint, Institute for Physics of Microstructures, Nyzhny Novgorod, 2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für Physik and Center of Interface Science, Carl von Ossietzky UniversitätOldenburgGermany

Personalised recommendations