Advertisement

Analytical determination of the Landau-Ginzburg parameters of (100) metal homoepitaxial systems

  • G. Petsos
  • H. M. Polatoglou
Solids and Liquids

Abstract.

In the initial stages of homoepitaxial growth on the (100) surface of metals such as Ag, Fe, Cu, Ni, and Pd, where the clean surface does not reconstruct, two-dimensional islands with compact, near-square shapes are formed. In order to determine the phenomenological material parameters of the nonlinear and nonlocal Landau-Ginzburg theory, which describes the metal homoepitaxial systems mentioned above, an atomistic model for these systems is developed. Based on this model, we derive analytical relationships between the Landau-Ginzburg parameters A, B, C, and D, and the parameters of the homoepitaxial system (such as coverage, first-neighbour interaction energy, etc.). We find that the Landau-Ginzburg parameters of the system depend on the specific material as well as on the coverage of the surface. We then apply the method to the Ag/Ag(100) system.

PACS.

68.47.De Metallic surfaces 61.50.Ah Theory of crystal structure, crystal symmetry; calculations and modeling 64.60.Qb Nucleation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harald Ibach, Physics of Surfaces and Interfaces (Springer, Berlin, 2006) Google Scholar
  2. Surface Analysis – The Principal Techniques, edited by J.C. Vickerman (John Wiley & Sons, 1997) Google Scholar
  3. R.M. Tromp, M. Mankos, Phys. Rev. Lett. 81, 1050 (1998) CrossRefADSGoogle Scholar
  4. C.R. Stoldt et al., Prog. Surf. Sci. 59, 67 (1998) CrossRefGoogle Scholar
  5. C.-M. Zhang et al., Surf. Sci. 406, 178 (1998) CrossRefGoogle Scholar
  6. M.C. Bartelt, J.W. Evans, Surf. Sci. 423, 189 (1999) CrossRefGoogle Scholar
  7. S. Frank et al., Phys. Rev. B 66, 155435 (2002) CrossRefADSGoogle Scholar
  8. Da-Jiang Liu, J.W. Evans, Phys. Rev. B 66, 165407 (2002) CrossRefADSGoogle Scholar
  9. Maozhi Li, J.W. Evans, Surf. Sci. 546, 127 (2003) CrossRefADSGoogle Scholar
  10. Maozhi Li, M.C. Bartelt, J.W. Evans, Phys. Rev. B 68, 121401(R) (2003) CrossRefADSGoogle Scholar
  11. Maozhi Li, J.W. Evans, Phys. Rev. B 69, 035410 (2004) CrossRefADSGoogle Scholar
  12. I.S. Aranson et al., Phys. Rev. Lett. 80, 1770 (1998) CrossRefADSGoogle Scholar
  13. G. Petsos, V. Vargiamidis, Comput. Mater. Sci. 17, 505 (2000) CrossRefGoogle Scholar
  14. N.W. Aschroft, N.D. Mermin, Solid State Physics (College Edition, Saunders College Publishing, 1976) Google Scholar
  15. C. Kittel, Introduction to Solid State Physics, 5th edition (John Wiley & Sons, Inc., 1976) Google Scholar
  16. M.E.J. Newman, G.T. Barkema, Monte Carlo Methods and Statistical Physics (Oxford University Press, New York, 1999) Google Scholar
  17. J.D. Gunton, M. San Miguel, P.S. Sahni, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press Inc., London, 1983), p. 269 Google Scholar
  18. A.C.E. Reid, R.J. Gooding, Phys. Rev. B 50, 3588 (1994) CrossRefADSGoogle Scholar
  19. B.P. van Zyl, R.J. Gooding, Phys. Rev. B 54, 15700 (1996) CrossRefADSGoogle Scholar
  20. B.P. van Zyl, R.J. Gooding, Metall. Mater. Trans. A 27, 1203 (1996) Google Scholar
  21. Y.A. Chu et al., Metall. Mater. Trans. A 31, 1321 (2000) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations