Influence of heat bath on the heat conductivity in disordered anharmonic chain

  • H. Zhao
  • L. Yi
  • F. Liu
  • B. Xu
Solids and Liquids


We study heat conduction in a one-dimensional disordered anharmonic chain with arbitrary heat bath by using extended Ford, Kac and Mazur (FKM) formulation, which satisfy the fluctuation-dissipation theorem. A simple formal expression for the heat conductivity κ is obtained, from which the asymptotic system-size (N) dependence is extracted. It shows κ∼Nα. As a special case we give the expression that κ∼N1/2 for free boundaries, and κ∼ N-1/2 for fixed boundaries, from which we can get the conclusion that the momentum conservation is a key factor of the anomalous heat conduction. Comparing with different ∇T, the heat conductivity shows large difference between the linear system and the nonlinear system.


44.10.+i Heat conduction 05.70.Ln Nonequilibrium and irreversible thermodynamics 05.60.Gg Quantum transport 05.45.Ac Low-dimensional chaos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T.S. Tighe, J.M. Worlock, M.L. Roukes, Appl. Phys. Lett. 70, 2687 (1997) CrossRefADSGoogle Scholar
  2. P. Kim, L. Shi, A. Majumdar, P.L. Mceuen, Phys. Rev. Lett. 87, 215502 (2001) CrossRefADSGoogle Scholar
  3. S. lijima, Nature (London) 354, 56 (1991) CrossRefADSGoogle Scholar
  4. G. Casati, J. Ford, F. Vivaldi, W.M. Visscher, Phys. Rev. Lett. 52, 1861 (1984) CrossRefADSGoogle Scholar
  5. D. Alonso, R. Artuso, G. Casati, I. Guarneri, Phys. Rev. Lett. 82, 1859 (1999) CrossRefADSGoogle Scholar
  6. D. Alonso, A. Ruiz, I. Vega, Phys. Rev. E 66, 066131 (2002) CrossRefADSMathSciNetGoogle Scholar
  7. B. Li, L. Wang, B. Hu, Phys. Rev. Lett. 88, 223901 (2002) CrossRefADSGoogle Scholar
  8. B. Li, G. Casati, J. Wang, Phys. Rev. E 67, 021204 (2003) CrossRefADSGoogle Scholar
  9. D. Alonso, A. Ruiz, I. Vega, Physica. D 187, 184 (2004) CrossRefADSMathSciNetGoogle Scholar
  10. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 78, 1932 (1997) CrossRefADSGoogle Scholar
  11. B.L. Zink, R. Pietri, F. Hellman, Phys. Rev. Lett. 96, 055902 (2006) CrossRefADSMathSciNetGoogle Scholar
  12. R. Sigh, S. Prakash, N.N Shukla, R. Prasad, Phys. Rev. B 70, 115213 (2004) CrossRefADSGoogle Scholar
  13. K.R. Naqvi, S. Waldenstrφm, Phys. Rev. Lett. 95, 065901 (2005) CrossRefADSGoogle Scholar
  14. A. Dhar, B.S. Shastry, Phys. Rev. B 67, 195405 (2003) CrossRefADSMathSciNetGoogle Scholar
  15. A. Dhar, Phys. Rev. Lett. 86, 5882 (2001) CrossRefADSGoogle Scholar
  16. K. Kaburaki, M. Machida, Phys. Lett. A 181, 85 (1993) CrossRefADSGoogle Scholar
  17. S. Lepri, R. Livi, A. Politi, Phys. Rev. Lett. 78, 1896 (1997) CrossRefADSGoogle Scholar
  18. T. Hatano, Phys. Rev. E 59, 1 (1999) CrossRefADSMathSciNetGoogle Scholar
  19. B. Hu, B. Li, W.M. Zhang, Phys. Rev. E 58, 4068 (1998) CrossRefADSGoogle Scholar
  20. K.A. Snyder, T.R. Kirkpatrick, Phys. Rev. B 73, 134204 (2006) CrossRefADSGoogle Scholar
  21. T. Prosen, D.K. Campbell, Phys. Rev. Lett. 84, 2857 (2000) CrossRefADSGoogle Scholar
  22. D.J. Yang, S.G. Wang, Q. Zhang, P.J. Sellin, G. Chen, Phys. Lett. A 329, 207 (2004) CrossRefADSGoogle Scholar
  23. J.W. Wildöer, L.G. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature (London) 391, 59 (1998) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsHuazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations