Nonlinear transport in \({\sf \beta}\)-Na 0.33V 2O 5

  • S. Sirbu
  • T. Yamauchi
  • Y. Ueda
  • P. H.M. van Loosdrecht
Solid and Condensed State Physics


Transport properties of the charge ordering compound β-Na0.33V2O5 are studied in the temperature range from 30 K to 300 K using current driven DC conductivity experiments. It is found that below the metal-insulator transition temperature (\(T_{MI}= 136~K\)) this material shows a nonlinear charge density modulation behavior. The observed conductivity is discussed in terms of a classical domain model for charge density modulation transport.


71.30.+h Metal-insulator transitions and other electronic transitions 72.20.Ht High-field and nonlinear effects 72.80.-r Conductivity of specific materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988) CrossRefADSGoogle Scholar
  2. J. Dumas, C. Schlenker, J. Marcus, R. Buder, Phys. Rev. Lett. 50, 757 (1983) CrossRefADSGoogle Scholar
  3. R.M. Fleming, C.C. Grimes, Phys. Rev. Lett. 42, 1423 (1979) CrossRefADSGoogle Scholar
  4. M. Pinteric, N. Biskup, S. Tomic, J.U. von Schutz, Synth. Metals 103, 2185 (1999) CrossRefGoogle Scholar
  5. Z.Z. Wang, J.C. Girard, C. Pasquier, D. Jérome, K. Bechgaard, Phys. Rev. B. 67, 121401 (2003) CrossRefADSGoogle Scholar
  6. R.E. Peierls, Quantum Theory of solids (Calderon, Oxford, 1955), p. 108 Google Scholar
  7. N.P. Ong, P. Monceau, Phys. Rev. B 16, 3443 (1977) CrossRefADSGoogle Scholar
  8. A. Guha, A. Ghosh, A.K. Raychaudhuri, S. Parashar, A.R. Raju, C.N.R. Rao, Appl. Phys. Lett. 75, 3381 (1999) CrossRefADSGoogle Scholar
  9. S. Brazovskii, T. Nattermann, Adv. Phys. 53, 177 (2004) CrossRefADSGoogle Scholar
  10. P.H.M. van Loosdrecht, B. Beschoten, I. Dotsenko, S. van Smaalen, J. Phys. IV France 12, 303 (2002) CrossRefGoogle Scholar
  11. B. Zawilski, J. Marcus, T. Klein, Europhys. Lett. 50, 75 (2000) CrossRefADSGoogle Scholar
  12. G.X. Tessema, L. Mihaly, Phys. Rev. B 35, 7680 (1987) CrossRefADSGoogle Scholar
  13. H. Yamada, Y. Ueda, J. Phys. Soc. Jpn 68, 2735 (1999) CrossRefGoogle Scholar
  14. T. Yamauchi, Y. Ueda, N. Mori, Phys. Rev. Lett. 89, 057002 (2002) CrossRefADSGoogle Scholar
  15. M.J. Sienko, J.B. Sohn, J. Chem. Phys. 44, 1369 (1965) CrossRefADSGoogle Scholar
  16. Y. Kanai, S. Kagoshima, H. Nagasawa, J. Phys. Soc. Jpn 51, 697 (1982) CrossRefADSGoogle Scholar
  17. Y. Ueda, H. Yamada, M. Isobe, T. Yamauchi, J. Alloys and Compounds 317, 109 (2001) CrossRefGoogle Scholar
  18. S. Nagai, M. Nishi, K. Kakurai, Y. Oohara, H. Kimura, Y. Noda, T. Yamauchi, J.I. Yamaura, M. Isobe, Y. Ueda, K. Hirota, J. Phys. Soc. Jpn 74, 1297 (2005) CrossRefADSGoogle Scholar
  19. C. Presura, M. Popinciuc, P.H.M. van Loosdrecht, D. van der Marel, M. Mostovoy, Phys. Rev. Lett. 90, 026402 (2003) CrossRefADSGoogle Scholar
  20. C. Presura, Energetics and ordering in strongly correlated oxides as seen in optics, Ph.D. thesis, University of Groningen, The Netherlands, 2003 Google Scholar
  21. The values of the resistivity at a given temperature differ slightly for different samples, presumably due to small variations in the sodium stoichiometry yam99 Google Scholar
  22. S.A. Brazovskii, Sov. Phys. JETP 51, 342 (1980) ADSGoogle Scholar
  23. The electric field is defined as the measured voltage divided by the probe contact separation Google Scholar
  24. G. Mihàly, P. Beauchene, J. Marcus, J. Dumas, C. Schlenker, Phys. Rev. B 37, 1047 (1988) CrossRefADSGoogle Scholar
  25. R.M. Fleming, R.J. Cava, L.F. Schneemeyer, E.A. Rieterman, R.G. Dunn, J. Phys. Rev. B 33, 5450 (1986) MathSciNetCrossRefADSGoogle Scholar
  26. D. Wang, Q. Xiao, W. Tang, T. Zhao, J. Shi, D. Tian, M. Tian, Modern Phys. Lett. B 13, 109 (1999) CrossRefADSGoogle Scholar
  27. P. Beauchene, J. Dumas, A. Janossy, J. Marcus, C. Schlenker, Physica B 143, 126 (1986) CrossRefGoogle Scholar
  28. S. Yue, C.A. Kuntscher, M. Dressel, S. van Smaalen, F. Ritter, W. Assmus, e-print cond-mat/0501332 Google Scholar
  29. C. Schlenker, Low-Dimensional Electronic Properties of Molibdenum Bronzes and Oxides (Kluwer Academic Publishers, 1989) Google Scholar
  30. H. Frölich, Proc. R. Soc. A 223, 296 (1954) ADSGoogle Scholar
  31. N. Ogawa, K. Miyano, S. Brazovski, Phys. Rev. B 71, 075118 (2005) CrossRefADSGoogle Scholar
  32. P. Monceau, J. Richard, M. Renard, J. Phys. Rev. B 25, 931 (1982) CrossRefADSGoogle Scholar
  33. G. Grüner, A. Zawadowski, P.M. Chaikin, Phys. Rev. Lett. 46, 511 (1981) CrossRefADSGoogle Scholar
  34. J. Bardeen, Phys. Rev. Lett. 42, 1498 (1979) CrossRefADSGoogle Scholar
  35. S.G. Lemay, R.E. Thorne, Y. Li, J.D. Brock, Phys. Rev. Lett. 83, 2793 (1999) CrossRefADSGoogle Scholar
  36. H. Fukuyama, P.A. Lee, Phys. Rev. B 17, 535 (1978) CrossRefADSGoogle Scholar
  37. P.A. Lee, T.M. Rice, Phys. Rev. B 19, 3970 (1979) CrossRefADSGoogle Scholar
  38. J.I. Yamaura, M. Isobe, H. Yamada, T. Yamauchi, Y. Ueda, J. Phys. Chem. Solids 63, 957 (2002) CrossRefADSGoogle Scholar
  39. P.W. Anderson, Y.B. Kim, Rev. Mod. Phys. 36, 39 (1964) CrossRefADSGoogle Scholar
  40. N.F. Mott, Philos. Mag. 19, 835 (1969) ADSGoogle Scholar
  41. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • S. Sirbu
    • 1
  • T. Yamauchi
    • 2
  • Y. Ueda
    • 2
  • P. H.M. van Loosdrecht
    • 1
  1. 1.Material Science Center, University of GroningenGroningenThe Netherlands
  2. 2.Institute for Solid State Physics, Tokyo UniversityTokyoJapan

Personalised recommendations