Advertisement

Asymptotic and effective coarsening exponents in surface growth models

  • P. Politi
  • A. Torcini
Surfaces and Interfaces

Abstract.

We consider a class of unstable surface growth models, \(\partial_t z = -\partial_x {\cal J}\), developing a mound structure of size λ and displaying a perpetual coarsening process, i.e. an endless increase in time of λ. The coarsening exponents n, defined by the growth law of the mound size λ with time, λ∼tn, were previously found by numerical integration of the growth equations [A. Torcini, P. Politi, Eur. Phys. J. B 25, 519 (2002)]. Recent analytical work now allows to interpret such findings as finite time effective exponents. The asymptotic exponents are shown to appear at so large time that cannot be reached by direct integration of the growth equations. The reason for the appearance of effective exponents is clearly identified.

PACS.

81.10.Aj Theory and models of crystal growth; physics of crystal growth, crystal morphology, and orientation 02.30.Jr Partial differential equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Politi, G. Grenet, A. Marty, A. Ponchet, J. Villain, Phys. Rep. 324, 271 (2000) CrossRefADSGoogle Scholar
  2. A. Pimpinelli, J. Villain, Physics of Crystal Growth (Cambridge University Press, Cambridge, 1998) Google Scholar
  3. P. Politi, J. Villain, in Surface diffusion: atomistic and collective processes, edited by M.C. Tringides (Plenum Press, New York, 1997), p 177 Google Scholar
  4. J.W. Evans, P.A. Thiel, M.C. Bartelt, Surf. Sci. Rep. 61, 1 (2006) CrossRefADSGoogle Scholar
  5. T. Michely, J. Krug, Islands, Mounds and Atoms (Springer, Berlin, 2004) Google Scholar
  6. P. Politi, C. Misbah, Phys. Rev. E 73, 036133 (2006) MathSciNetCrossRefADSGoogle Scholar
  7. P. Politi, C. Misbah, Phys. Rev. Lett. 92, 090601 (2004) CrossRefADSGoogle Scholar
  8. A. Torcini, P. Politi, Eur. Phys. J. B 25, 519 (2002). See also: P. Politi, A. Torcini, J. Phys. A: Math. Gen. 33, L77 (2000) CrossRefADSGoogle Scholar
  9. J.S. Langer, Ann. Phys. 65, 53 (1971) CrossRefADSGoogle Scholar
  10. See reference PRE, Appendix A Google Scholar
  11. L.D. Landau, E.M. Lifshitz, Mechanics (Pergamon Press, Oxford, 1976), Section 28 Google Scholar
  12. L. Golubović, Phys. Rev. Lett. 78, 90 (1997) CrossRefADSGoogle Scholar
  13. M. Rost, J. Krug, Phys. Rev. E 55, 3952 (1997) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10Sesto FiorentinoItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via Sansone 1Sesto FiorentinoItaly

Personalised recommendations