Advertisement

Ground state and glass transition of the RNA secondary structure

Statistical Physics and Biological Information

Abstract.

RNA molecules form a sequence-specific self-pairing pattern at low temperatures. We analyze this problem using a random pairing energy model as well as a random sequence model that includes a base stacking energy in favor of helix propagation. The free energy cost for separating a chain into two equal halves offers a quantitative measure of sequence specific pairing. In the low temperature glass phase, this quantity grows quadratically with the logarithm of the chain length, but it switches to a linear behavior of entropic origin in the high temperature molten phase. Transition between the two phases is continuous, with characteristics that resemble those of a disordered elastic manifold in two dimensions. For designed sequences, however, a power-law distribution of pairing energies on a coarse-grained level may be more appropriate. Extreme value statistics arguments then predict a power-law growth of the free energy cost to break a chain, in agreement with numerical simulations. Interestingly, the distribution of pairing distances in the ground state secondary structure follows a remarkable power-law with an exponent -4/3, independent of the specific assumptions for the base pairing energies.

PACS.

87.14.Gg DNA, RNA 87.15.-v Biomolecules: structure and physical properties 64.70.Pf Glass transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2002) Google Scholar
  2. K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas, H.S. Chan, Protein Sci. 4, 561 (1995) CrossRefGoogle Scholar
  3. J.N. Onuchic, Z. Luthey-Schulten, P.G. Wolynes, Annu. Rev. Phys. Chem. 48, 545 (1997) CrossRefADSGoogle Scholar
  4. E.I. Shakhnovich, Curr. Opin. Struct. Biol. 7, 29 (1997) CrossRefGoogle Scholar
  5. O. Schueler-Furman, C. Wang, P. Bradley, K. Misura, D. Baker, Science 310, 638 (2005) CrossRefADSGoogle Scholar
  6. C.D. Snow, E.J. Sorin, Y.M. Rhee, V.S. Pande, Annu. Rev. Biophys. Biomol. Struct. 34, 43 (2005) CrossRefGoogle Scholar
  7. For a review, see T. Garel, H. Orland, E. Pitard, in Spin Glasses and Random Fields, edited by A.P. Young (World Scientific, 1998), p. 387 Google Scholar
  8. T. Hwa, Nature 399, 17 (1999) CrossRefADSGoogle Scholar
  9. I. Tinoco Jr, C. Bustamante, J. Mol. Biol. 293, 271 (1999) CrossRefGoogle Scholar
  10. RNA Structure and Function, edited by R.W. Simons, M. Grunberg-Manago (Cold-Spring, Harbor, 1998) Google Scholar
  11. Nucleic Acids in Chemistry and Biology, edited by G.M. Blackburn, M.J. Gait (IRL Press, Oxford, 1990) Google Scholar
  12. M.L.M. Anderson, Nucleic Acid Hybridization (Springer, New York, 1998) Google Scholar
  13. For a recent review see R. Bundschuh, U. Gerland, Eur. Phys. J. E 19, 319 (2006) CrossRefGoogle Scholar
  14. M. Zuker, D. Sankoff, Bull. Math. Biol. 46, 591 (1984); M. Zuker, Science 244, 48 (1989) MATHGoogle Scholar
  15. R. Bundschuh, T. Hwa, Phys. Rev. Lett. 83, 1479 (1999); Phys. Rev. E 65, 031903 (2002) CrossRefADSGoogle Scholar
  16. R. Nussinov, G. Pieczenik, J.R. Griggs, D.J. Kleitman, SIAM J. Appl. Math. 35, 68 (1978) MATHMathSciNetCrossRefGoogle Scholar
  17. R. Durbin, S.R. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis (Cambridge University Press, Cambridge, UK, 1998) Google Scholar
  18. P.-G. de Gennes, Biopolymers 6, 715 (1968) CrossRefGoogle Scholar
  19. P.G. Higgs, Phys. Rev. Lett. 76, 704 (1996); Q. Rev. Biophys. 33, 199 (2000) CrossRefADSGoogle Scholar
  20. A. Pagnani, G. Parisi, F. Ricci-Tersenghi, Phys. Rev. Lett. 84, 2026 (2000) CrossRefADSGoogle Scholar
  21. A.K. Hartmann, Phys. Rev. Lett. 86, 1382 (2001) CrossRefADSGoogle Scholar
  22. F. Krzakala, M. Mèzard, M. Müller, Europhys. Lett. 57, 752 (2002); M. Müller, F. Krzakala, M. Mèzard, Eur. Phys. J. E 9, 67 (2002); M. Müller, Phys. Rev. E 67, 021914 (2003) CrossRefADSGoogle Scholar
  23. E. Marinari, A. Pagnani, F. Ricci-Tersenghi, Phys. Rev. E 65, 041919 (2002) CrossRefADSGoogle Scholar
  24. M. Mézard, J. Phys. 51, 1831 (1990) Google Scholar
  25. J. SantaLucia Jr, Proc. Nat. Acad. Sci. USA 95, 1460 (1998) CrossRefADSGoogle Scholar
  26. S. Karlin, A. Dembo, Adv. Appl. Probab. 24, 113 (1992) MATHMathSciNetCrossRefGoogle Scholar
  27. L.-H. Tang, H. Chaté, Phys. Rev. Lett. 86, 830 (2001) CrossRefADSGoogle Scholar
  28. Y.-K. Yu, T. Hwa, J. Comp. Biol. 8, 249 (2001) MATHCrossRefGoogle Scholar
  29. T. Hwa, E. Marinari, K. Sneppen, L.-H. Tang, Proc. Nat. Acad. Sci. 100, 4411 (2003) CrossRefADSGoogle Scholar
  30. T. Halpin-Healy, Y.-C. Zhang, Phys. Rep. 254, 215 (1995) CrossRefADSGoogle Scholar
  31. J. Krug, P. Meakin, J. Phys. A 23, L987 (1990) Google Scholar
  32. L.-H. Tang, B.M. Forrest, D.E. Wolf, Phys. Rev. A 45, 7162 (1992) CrossRefADSGoogle Scholar
  33. C. Zeng, P.L. Leath, T. Hwa, Phys. Rev. Lett. 83, 4860 (1999) CrossRefADSGoogle Scholar
  34. D. Carpentier, P. Le Doussal, Phys. Rev. B 55, 12128 (1997), and references therein CrossRefADSGoogle Scholar
  35. R. Mukhopadhyay, E. Emberly, C. Tang, N.S. Wingreen, Phys. Rev. E 68, 041904 (2003) CrossRefADSGoogle Scholar
  36. F.J. Isaacs, D.J. Dwyer, J.J. Collins, Nat. Biotechnol. 24, 545 (2006) CrossRefGoogle Scholar
  37. M. Lässig, K.J. Wiese, Phys. Rev. Lett. 96, 228101 (2006) CrossRefADSGoogle Scholar
  38. F. David, K. J. Wiese, e-print arXiv:q-bio.BM/0607044 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsHong Kong Baptist UniversityHong Kong SARP.R. China

Personalised recommendations