Advertisement

Numerical study of the directed polymer in a 1 + 3 dimensional random medium

  • C. Monthus
  • T. Garel
Statistical and Nonlinear Physics

Abstract.

The directed polymer in a 1+3 dimensional random medium is known to present a disorder-induced phase transition. For a polymer of length L, the high temperature phase is characterized by a diffusive behavior for the end-point displacement R2 ∼L and by free-energy fluctuations of order ΔF(L) ∼O(1). The low-temperature phase is characterized by an anomalous wandering exponent R2/L ∼Lω and by free-energy fluctuations of order ΔF(L) ∼Lω where ω∼0.18. In this paper, we first study the scaling behavior of various properties to localize the critical temperature Tc. Our results concerning R2/L and ΔF(L) point towards 0.76 < Tc ≤T2=0.79, so our conclusion is that Tc is equal or very close to the upper bound T2 derived by Derrida and coworkers (T2 corresponds to the temperature above which the ratio \(\bar{Z_L^2}/(\bar{Z_L})^2\) remains finite as L ↦ ∞). We then present histograms for the free-energy, energy and entropy over disorder samples. For T ≫Tc, the free-energy distribution is found to be Gaussian. For T ≪Tc, the free-energy distribution coincides with the ground state energy distribution, in agreement with the zero-temperature fixed point picture. Moreover the entropy fluctuations are of order ΔS ∼L1/2 and follow a Gaussian distribution, in agreement with the droplet predictions, where the free-energy term ΔF ∼Lω is a near cancellation of energy and entropy contributions of order L1/2.

PACS.

02.50.-r Probability theory, stochastic processes, and statistics 64.70.-p Specific phase transitions 65.60.+a hermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Halpin-Healy, Y.-C. Zhang, Phys. Repts. 254, 215 (1995) CrossRefADSGoogle Scholar
  2. B. Derrida, H. Spohn, J. Stat. Phys. 51, 817 (1988) MATHMathSciNetCrossRefGoogle Scholar
  3. B. Derrida, Physica A 163, 71 (1990) MathSciNetCrossRefADSGoogle Scholar
  4. M. Mézard, J. Phys. France 51, 1831 (1990) Google Scholar
  5. D.S. Fisher, D.A. Huse, Phys. Rev. B 43, 10728 (1991) CrossRefADSGoogle Scholar
  6. P. Carmona, Y. Hu, Prob. Th., Rel. Fields 124, 431 (2002); P. Carmona, Y. Hu, e-print arXiv:math.PR/0601670 MATHMathSciNetCrossRefGoogle Scholar
  7. F. Comets, T. Shiga, N. Yoshida, Bernoulli 9, No. 4, 705 (2003) MATHMathSciNetGoogle Scholar
  8. T. Hwa, D.S. Fisher, Phys. Rev. B 49, 3136 (1994) CrossRefADSGoogle Scholar
  9. D.S. Fisher, D.A. Huse, Phys. Rev. B 38, 386 (1988) CrossRefADSGoogle Scholar
  10. J.Z. Imbrie, T. Spencer, J. Stat. Phys. 52, 609 (1988) MATHMathSciNetCrossRefGoogle Scholar
  11. J. Cook, B. Derrida, J. Stat. Phys. 57, 89 (1989) CrossRefGoogle Scholar
  12. B. Derrida, R.B. Griffiths, Europhys. Lett. 8, 111 (1989) ADSGoogle Scholar
  13. B. Derrida, O. Golinelli, Phys. Rev. A 41, 4160 (1990) CrossRefADSGoogle Scholar
  14. M.R. Evans, B. Derrida, J. Stat. Phys. 69, 427 (1992) MATHCrossRefGoogle Scholar
  15. C. Monthus, T. Garel, e-print arXiv:cond-mat/0603041 Google Scholar
  16. M. Birkner, Elect. Comm. in Probab. 9, 22 (2004); M. Birkner, Ph.D. thesis, http://publikationen.stub.uni-frankfurt.de/ volltexte/2003/314/ MATHMathSciNetGoogle Scholar
  17. C. Monthus, T. Garel, e-print arXiv:cond-mat/0605448 Google Scholar
  18. M. Aizenman, J.L. Lebowitz, D. Ruelle, Comm. Math. Phys. 112, 3 (1987) MathSciNetCrossRefADSGoogle Scholar
  19. F. Comets, J. Neveu, Comm. Math. Phys. 166, 549 (1995) MATHMathSciNetCrossRefADSGoogle Scholar
  20. A. Bovier, I. Kurkova, M. Löwe, Ann. Prob. 30, 605 (2002) MATHMathSciNetCrossRefGoogle Scholar
  21. J.M. Kim, A.J. Bray, M.A. Moore, Phys. Rev. A 44, R4782 (1991) Google Scholar
  22. C. Monthus, T. Garel, e-print arXiv:cond-mat/0602200 Google Scholar
  23. X-H. Wang, S. Havlin, M. Schwartz, J. Phys. Chem. B 104, 3875 (2000); X-H. Wang, S. Havlin, M. Schwartz, Phys. Rev. E 63, 032601 (2001) CrossRefGoogle Scholar
  24. C.A. Doty, J.M. Kosterlitz, Phys. Rev. Lett. 69, 1979 (1992) CrossRefADSGoogle Scholar
  25. D.A. Huse, C.L. Henley, Phys. Rev. Lett. 54, 2708 (1985) CrossRefADSGoogle Scholar
  26. B.M. Forrest, L.-H. Tang, Phys. Rev. Lett. 64, 1405 (1990) CrossRefADSGoogle Scholar
  27. S. Wiseman, E. Domany, Phys. Rev. Lett. 81, 22 (1998); S. Wiseman, E. Domany, Phys. Rev. E 58, 2938 (1998) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Service de Physique Théorique, CEA/DSM/SPhT, Unité de recherche associée au CNRSGif-sur-Yvette CedexFrance

Personalised recommendations