Valence transition in the periodic Anderson model

  • A. Hübsch
  • K. W. Becker
Solid and Condensed State Physics


A very rich phase diagram has recently been found in CeCu2Si2 from high pressure experiments where, in particular, a transition between an intermediate valence configuration and an integral valent heavy fermion state has been observed. We show that such a valence transition can be understood in the framework of the periodic Anderson model. In particular, our results show a breakdown of a mixed-valence state which is accompanied by a drastic change in the f occupation in agreement with experiment. This valence transition can possibly be interpreted as a collapse of the large Fermi surface of the heavy fermion state which incorporates not only the conduction electrons but also the localized f electrons. The theoretical approach used in this paper is based on the novel projector-based renormalization method (PRM). With respect to the periodic Anderson model, the method was before only employed in combination with the basic approximations of the well-known slave-boson mean-field theory. In this paper, the PRM treatment is performed in a more sophisticated manner where both mixed as well as integral valent solutions have been obtained. Furthermore, we argue that the presented PRM approach might be a promising starting point to study the competing interactions in CeCu2Si2 and related compounds.


71.10.Fd Lattice fermion models (Hubbard model, etc.) 71.27.+a Strongly correlated electron systems; heavy fermions 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. F. Steglich et al., Phys. Rev. Lett. 43, 1892 (1979) CrossRefGoogle Scholar
  2. O. Trovarelli et al., Phys. Rev. B 56, 678 (1997) CrossRefGoogle Scholar
  3. H.Q. Yuan et al., Science 302, 2104 (2003) CrossRefGoogle Scholar
  4. A.T. Holmes, D. Jaccard, K. Miyake, Phys. Rev. B 69, 024508 (2004) CrossRefADSGoogle Scholar
  5. P. Thalmeier et al., e-print arXiv:cond-mat/0409363 Google Scholar
  6. P.A. Lee et al., Comments Cond. Mat. Phys. 12, 99 (1986) Google Scholar
  7. See, for example, P. Coleman, Phys. Rev. B 35, 5072 (1987); A.J. Millis, P.A. Lee, Phys. Rev. B 35, 3394 (1987); P. Sun, G. Kotliar, Phys. Rev. Lett. 91, 037209 (2003) CrossRefGoogle Scholar
  8. Y. Onishi, K. Miyake, J. Phys. Soc. Jpn 69, 3955 (2000) CrossRefGoogle Scholar
  9. K.W. Becker, A. Hübsch, T. Sommer, Phys. Rev. B 66, 235115 (2002) CrossRefADSGoogle Scholar
  10. A. Hübsch, K.W. Becker, Phys. Rev. B 71, 155116 (2005) CrossRefADSGoogle Scholar
  11. P. Coleman, Phys. Rev. B29, 3035 (1984) Google Scholar
  12. For a review see, for example, P. Fulde, J. Keller, and G. Zwicknagl, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, San Diego, 1988), Vol. 41, p. 1 Google Scholar
  13. F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994) MATHGoogle Scholar
  14. S.D. Głazek, K.G. Wilson, Phys. Rev. D 48, 5863 (1993); S.D. Głazek, K.G. Wilson, Phys. Rev. D 49, 4214 (1994) CrossRefADSGoogle Scholar
  15. R. Franco, M.S. Figueira, M.E. Foglio, Phys. Rev. B 66, 045112 (2002) CrossRefADSGoogle Scholar
  16. F.D.M. Haldane, Phys. Rev. Lett. 40, 416 (1978) CrossRefADSGoogle Scholar
  17. M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000) CrossRefADSGoogle Scholar
  18. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany
  2. 2.Department of PhysicsUniversity of CaliforniaDavisUSA
  3. 3.Institut für Theoretische Physik, Technische Universität DresdenDresdenGermany

Personalised recommendations