Advertisement

Localization properties of driven disordered one-dimensional systems

  • D. F. Martinez
  • R. A. Molina
Mesoscopic Physics

Abstract.

We generalize the definition of localization length to disordered systems driven by a time-periodic potential using a Floquet-Green function formalism. We study its dependence on the amplitude and frequency of the driving field in a one-dimensional tight-binding model with different amounts of disorder in the lattice. As compared to the autonomous system, the localization length for the driven system can increase or decrease depending on the frequency of the driving. We investigate the dependence of the localization length with the particle's energy and prove that it is always periodic. Its maximum is not necessarily at the band center as in the non-driven case. We study the adiabatic limit by introducing a phenomenological inelastic scattering rate which limits the delocalizing effect of low-frequency fields.

PACS.

72.15.Rn Localization effects 73.20.Fz Weak or Anderson localization 73.21.Hb Quantum wires 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Anderson, Phys. Rev. 109, 1492 (1958) CrossRefADSGoogle Scholar
  2. I.M. Lifshits, S.A. Gredeskul, L.A. Pastur, Introduction to the theory of disordered systems (John Wiley and Sons, New York, 1988) Google Scholar
  3. B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993) CrossRefADSGoogle Scholar
  4. M. Kemp, V. Mujica, M.A. Ratner, J. Chem. Phys. 101, 5172 (1994) MathSciNetCrossRefADSGoogle Scholar
  5. K. Ishii, Prog. Theor. Phys. Suppl. 53, 77 (1973) ADSGoogle Scholar
  6. S. Kohler, S. Camalet, M. Strass, J. Lehmann, G.-L. Ingold, P. Hänggi, Chem. Phys. 296, 243 (2004) CrossRefADSGoogle Scholar
  7. G. Platero, R. Aguado, Phys. Rep. 395, 1 (2004) CrossRefADSGoogle Scholar
  8. B.J. Keay, S. Zeuner, S.J. Allen, K.D. Maranowski, A.C. Gossard, U. Bhattacharya, M.J.M. Rodwell, Phys. Rev. Lett. 75, 4102 (1995) CrossRefADSGoogle Scholar
  9. S. Winnerl, E. Schomburg, J. Grenzer, H.-J. Regl, A.A. Ignatov, K.F. Renk, D.P. Pavelev, Y. Koschurinov, B. Melzer, V. Ustinov, S. Ivanov, S. Schaposchnikov, P.S. Kop'ev, Superlattices Microstruct. 21, 91 (1997) CrossRefADSGoogle Scholar
  10. S. Yasutoni, T. Morita, Y. Imanishi, S. Kimura, Science 304, 1944 (2004) CrossRefADSGoogle Scholar
  11. M. Holthaus, G.H. Ristow, D.W. Hone, Phys. Rev. Lett. 75, 3914 (1995) CrossRefADSGoogle Scholar
  12. M. Holthaus, D.W. Hone, Phil. Mag. B 74, 105 (1996) Google Scholar
  13. D.H. Dunlap, V.M. Kenkre, Phys. Rev. B 34, 3625 (1986) CrossRefADSGoogle Scholar
  14. F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, Phys. Rev. Lett. 67, 516 (1991) CrossRefADSGoogle Scholar
  15. M. Holthaus, Z. Phys. B 89, 251 (1992) CrossRefADSGoogle Scholar
  16. M. Holthaus, Phys. Rev. Lett. 69, 351 (1992) CrossRefADSGoogle Scholar
  17. D.F. Martinez, R.A. Molina, Phys. Rev. B 73, 073104 (2006) CrossRefADSGoogle Scholar
  18. J.H. Shirley, Phys. Rev. B 138, 979 (1965) CrossRefADSGoogle Scholar
  19. B. Ya. Zel'dovich, Sov. Phys. -JETP 24, 1006 (1967) ADSGoogle Scholar
  20. H. Sambe, Phys. Rev. A 7, 2203 (1972) CrossRefADSGoogle Scholar
  21. K. Drese, M. Holthaus, Eur. Phys. J. D 5, 119 (1999) CrossRefADSGoogle Scholar
  22. D.F. Martinez, J. Phys. A: Math. Gen. 36, 9827 (2003) MATHCrossRefADSGoogle Scholar
  23. D.F. Martinez, J. Phys. A: Math. Gen. 38, 9979 (2005) MATHCrossRefADSGoogle Scholar
  24. F.H.M. Faisal, Comp. Phys. Rep. 9, 55 (1989) CrossRefGoogle Scholar
  25. S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005) CrossRefADSGoogle Scholar
  26. R. Landauer, IBM J. Res. Dev. 1, 223 (1957); M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986); S. Datta, Electron Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995) MathSciNetCrossRefGoogle Scholar
  27. G. Czycholl, B. Kramer, A. MacKinnon, Z. Phys. B 43, 5 (1981); M. Kappus, F. Wegner, Z. Phys. B 45, 15 (1981) CrossRefADSGoogle Scholar
  28. W.V. Houston, Phys. Rev. 57, 184 (1940) MathSciNetCrossRefADSGoogle Scholar
  29. G.D. Mahan, Many Particle Physics (Kluwer Academic/Plenum Publishing, New York, 2000) Google Scholar
  30. M. Moskalets, M. Büttiker, Phys. Rev. B 66, 205320 (2002); M. Moskalets, M. Büttiker, Phys. Rev. B 72, 035324 (2005) CrossRefADSGoogle Scholar
  31. H. Gimperlein, S. Wessel, J. Schmiedmayer, L. Santos, Phys. Rev. Lett. 95, 170401 (2005); J.E. Lye, L. Fallani, M. Modugno, D.S. Wiersma, C. Fort, M. Inguscio, Phys. Rev. Lett. 95, 070401 (2005); D. Clément, A.F. Varón, M. Hugbart, J.A. Retter, P. Bouyer, L. Sanchez-Palencia, D.M. Gangardt, G.V. Shlyapnikov, A. Aspect, Phys. Rev. Lett. 95, 170409 (2005) CrossRefADSGoogle Scholar
  32. K.W. Madison, M.C. Fisher, R.B. Diener, Qian Niu, M.G. Raizen, Phys. Rev. Lett. 81, 5093 (1994) CrossRefADSGoogle Scholar
  33. P. Horak, J.-Y. Courtois, G. Grynberg, Phys. Rev. A 58, 3953 (2000) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Max-Planck-Institute für Physik Komplexer SystemeDresdenGermany

Personalised recommendations