Advertisement

Charge and spin currents tunnelling through a toroidal carbon nanotube side-coupled with a quantum dot

  • H.-K. Zhao
  • J. Wang
  • Q. Wang
Mesoscopic Physics

Abstract.

We have investigated the mesoscopic transport through the system with a quantum dot (QD) side-coupled to a toroidal carbon nanotube (TCN) in the presence of spin-flip effect. The coupled QD contributes to the mesoscopic transport significantly through adjusting the gate voltage and Zeeman field applied to the QD. The compound TCN-QD microstructure is related to the separate subsystems, the applied external magnetic fields, as well as the combination of subsystems. The spin current component Izs is independent on time, while the spin current components Ixs and Iys evolve with time sinusoidally. The rotating magnetic field induces novel levels due to the spin splitting and photon absorption procedures. The suppression and enhancement of resonant peaks, and semiconductor-metal phase transition are observed by studying the differential conductance through tuning the source-drain bias and photon energy. The magnetic flux induces Aharonov-Bohm oscillation, and it controls the tunnelling behavior due to adjusting the flux. The Fano type of multi-resonant behaviors are displayed in the conductance structures by adjusting the gate voltage Vg and the Zeeman field \(\bf B\rm_2\) applied to the QD.

PACS.

85.35.-p Nanoelectronic devices 73.23.-b Electronic transport in mesoscopic systems 72.25.Mk Spin transport through interfaces 73.21.La Quantum dots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Tsukagoshi, B.W. Alphenaar, H. Ago, Nature (London) 401, 572 (1999) CrossRefADSGoogle Scholar
  2. A.F. Morpurgo, J. Kong, C.M. Marcus, H. Dai, Science 286, 263 (1999) CrossRefGoogle Scholar
  3. H. Mehrez, J. Taylor, H. Guo, J. Wang, C. Roland, Phys. Rev. Lett. 84, 2682 (2000) CrossRefADSGoogle Scholar
  4. B.I. Dunlap, Phys. Rev. B 46, 1933 (1992) CrossRefADSGoogle Scholar
  5. S. Itoh, S. Ihara, J. Kitakami, Phys. Rev. B 47, 1703 (1993); S. Itoh, S. Ihara, J. Kitakami, Phys. Rev. B 47, 12908 (1993) MathSciNetCrossRefADSGoogle Scholar
  6. R.C. Haddon, Nature (London) 388, 31 (1997) CrossRefADSGoogle Scholar
  7. R. Martel, H.R. Shea, Ph. Avouris, Nature (London) 398, 299 (1999); H.R. Shea, R. Martel, Ph. Avouris, Phys. Rev. Lett. 84, 4441 (2000) CrossRefADSGoogle Scholar
  8. M.F. Lin, D.S. Chuu, Phys. Rev. B 57, 6731 (1998); R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998) CrossRefADSGoogle Scholar
  9. H.K. Zhao, Phys. Lett. A 310, 207 (2003); H.K. Zhao, Phys. Lett. A 317, 329 (2003) CrossRefADSGoogle Scholar
  10. H.K. Zhao, Phys. Lett. A 308, 226 (2003); H.K. Zhao, Eur. Phys. J. B 33, 365 (2003) CrossRefADSGoogle Scholar
  11. H.K. Zhao, J. Wang, Phys. Lett. A 325, 285 (2004); H.K. Zhao, J. Wang, Eur. Phys. J. B 40, 93 (2004) CrossRefADSGoogle Scholar
  12. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990) CrossRefADSGoogle Scholar
  13. S.A. Wolf et al., Science 294, 1488 (2001); R. Fiederling et al., Nature (London) 402, 787 (1999) CrossRefGoogle Scholar
  14. G.A. Prinz, Science 282, 1660 (1998); Y. Ohno et al., Nature (London) 402, 790 (1999) CrossRefGoogle Scholar
  15. A. Brataas, Y. Tserkovnyak, G.E.W. Bauer, B. Halperin, Phys. Rev. B 66, 060404 (2002) CrossRefADSGoogle Scholar
  16. Q.F. Sun, H. Guo, J. Wang, Phys. Rev. Lett. 90, 25830 (2003) Google Scholar
  17. B. Wang, J. Wang, H. Guo, Phys. Rev. B 67, 092408 (2003) CrossRefGoogle Scholar
  18. H.K. Zhao, J. Wang, Eur. Phys. J. B 44, 93 (2005) CrossRefADSGoogle Scholar
  19. H.K. Zhao, Q. Wang, Phys. Lett. A 338, 425 (2005) CrossRefADSGoogle Scholar
  20. H.K. Zhao, L.N. Zhao, Eur. Phys. J. B 47, 295 (2005) CrossRefADSGoogle Scholar
  21. M. Büttiker, C.A. Stafford, Phys. Rev. Lett. 76, 495 (1996) CrossRefADSGoogle Scholar
  22. P. Zhang, Q.K. Xie, X.C. Xie, Phys. Rev. Lett. 91, 196602 (2003) CrossRefADSGoogle Scholar
  23. T. Ando, Semicond. Sci. Technol. 15, R13 (2000) Google Scholar
  24. A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994) CrossRefADSGoogle Scholar
  25. H.K. Zhao, Z. Phys. B 102, 415 (1997); H.K. Zhao, Phys. Lett. A 226, 105 (1997); H.K. Zhao, Phys. Rev. B 63, 205327 (2001) CrossRefGoogle Scholar
  26. J.P. Lu, Phys. Rev. Lett. 74, 1123 (1995) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.CCAST (World Laboratory)BeijingP.R. China
  2. 2.Department of PhysicsThe University of Hong KongHong KongP.R. China
  3. 3.Department of PhysicsBeijing Institute of TechnologyBeijingP.R. China

Personalised recommendations