Advertisement

Temperature dependence of photoluminescence in amorphous Si1-xCx:H films

  • K. Rerbal
  • I. Solomon
  • J.-N. Chazalviel
  • F. Ozanam
Solid and Condensed State Physics

Abstract.

We have investigated the temperature dependence of photoluminescence in hydrogenated amorphous silicon-carbon alloys a-Si1-xCx:H prepared by glow discharge in the low-power regime. The radiative recombination process, due to photocarriers trapped on band-edge states, is in competition with the thermal escape of the photocarriers into the mobility bands. The model gives a quantitative fit with experiment, without any adjustable parameter, provided the width of the band-edge distribution of states is taken as the width of the conduction band only (measured by “photo-induced infra-red spectroscopy”) and not as the Urbach energy, as it is usually assumed.

PACS.

72.20.Jv Charge carriers: generation, recombination, lifetime, and trapping 78.55.Qr Amorphous materials; glasses and other disordered solids 81.05.Gc Amorphous semiconductors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bullot, M.P. Schmidt, Phys. Status Solidi (b) 143, 345 (1987) Google Scholar
  2. L.R. Tessler, I. Solomon, Phys. Rev. B 52, 10962 (1995) CrossRefADSGoogle Scholar
  3. I. Solomon, M.P. Schmidt, H. Tran-Quoc, Phys. Rev. B 38, 9895 (1988) CrossRefADSGoogle Scholar
  4. I. Solomon, M.P. Schmidt, C. Senemaud, M. Driss-Khodja, J. Non-Cryst. Solids 97, 1091 (1987) CrossRefGoogle Scholar
  5. R.W. Collins, M.A. Paesler, W. Paul, Solid State Commun. 34, 833 (1980) CrossRefGoogle Scholar
  6. R. A. Street, Hydrogenated amorphous silicon (Cambridge Solid State Science Series, Cambridge, UK, 1991) Google Scholar
  7. D.J. Dunstan, F. Boulitrop, Phys. Rev. B 28, 5923 (1983) CrossRefADSGoogle Scholar
  8. R.A. Street, Adv. Phys. 30, 593 (1981) CrossRefADSGoogle Scholar
  9. W. Shockley, W.T. Reed, Phys. Rev. 87, 835 (1952) MATHCrossRefADSGoogle Scholar
  10. L.R. Tessler, Solid State Commun. 111, 193 (1999) CrossRefGoogle Scholar
  11. T. Muschik, R. Schwartz, J. Non-Cryst. Solids 164–166, 619 (1993) Google Scholar
  12. R.B. Wehrspohn, J.-N. Chazalviel, F. Ozanam, I. Solomon, Eur. Phys. J. B 8, 179 (1999) CrossRefADSGoogle Scholar
  13. K. Rerbal, J.-N. Chazalviel, F. Ozanam, I. Solomon, Phys. Rev. B 66, 184209 (2002) CrossRefADSGoogle Scholar
  14. S. Liedtke, K. Lips, M. Bort, K. Jahn, W. Fuhs, J. Non-Cryst. Solids 114, 522 (1989) CrossRefGoogle Scholar
  15. D. Monroe, Phys. Rev. Lett. 54, 146 (1985) CrossRefADSGoogle Scholar
  16. The corresponding transition temperature for holes is expected to be nearly twice as large, but is unimportant for the luminescence intensity which is limited by electron detrapping as explained in the previous section Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • K. Rerbal
    • 1
  • I. Solomon
    • 1
  • J.-N. Chazalviel
    • 1
  • F. Ozanam
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée, CNRS-École PolytechniquePalaiseauFrance

Personalised recommendations