The continuum gauge field-theory model for low-energy electronic states of icosahedral fullerenes

Mesoscopic Physics

Abstract.

The low-energy electronic structure of icosahedral fullerenes is studied within the field-theory model. In the field model, the pentagonal rings in the fullerene are simulated by two kinds of gauge fields. The first one, non-abelian field, follows from so-called K spin rotation invariance for the spinor field while the second one describes the elastic flow due to pentagonal apical disclinations. For fullerene molecule, these fluxes are taken into account by introducing an effective field due to magnetic monopole placed at the center of a sphere. Additionally, the spherical geometry of the fullerene is incorporated via the spin connection term. The exact analytical solution of the problem (both for the eigenfunctions and the energy spectrum) is found.

PACS.

73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.W. Kroto, J.R. Heath, S.C. O'Brian, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985) CrossRefADSGoogle Scholar
  2. G. Gensterblum, J. Electron Spectroscopy and Related Phenomena 81, 89 (1996) CrossRefGoogle Scholar
  3. G.A. Gallup, Chem. Phys. Lett. 187, 187 (1991) CrossRefADSGoogle Scholar
  4. E. Manousakis, Phys. Rev. B 44, 10991 (1991) CrossRefADSGoogle Scholar
  5. Y.-L. Lin, F. Nori, Phys. Rev. B 49, 5020 (1994) CrossRefADSGoogle Scholar
  6. A.C. Tang, F.Q. Huang, R.Z. Liu, Phys. Rev. B 53, 7442 (1996) CrossRefADSGoogle Scholar
  7. A. Pérez-Garrido, F. Alhama, D.J. Katada, Chem. Phys. 278, 77 (2002) Google Scholar
  8. J.W. Mintmire, B.I. Dunlap, D.W. Brenner, R.C. Mowray, C.T. White, Phys. Rev. B 43, 14281 (1991) CrossRefADSGoogle Scholar
  9. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett. 69, 172 (1992) CrossRefADSGoogle Scholar
  10. J. González, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 406, 771 (1993) CrossRefADSMATHGoogle Scholar
  11. V.A. Osipov, E.A. Kochetov, M. Pudlak, JETP 96, 140 (2003) CrossRefGoogle Scholar
  12. P.E. Lammert, V.H. Crespi, Phys. Rev. B 69, 035406 (2004) CrossRefADSGoogle Scholar
  13. E.A. Kochetov, V.A. Osipov, J. Phys. A: Math. Gen. 32, 1961 (1999) CrossRefADSMATHMathSciNetGoogle Scholar
  14. J. Tersoff, Phys. Rev. B 46, 15546 (1992) CrossRefADSGoogle Scholar
  15. V.A. Osipov, Phys. Lett. A 164, 327 (1992) CrossRefADSMathSciNetGoogle Scholar
  16. D.P. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984) CrossRefADSGoogle Scholar
  17. H.S. Seung, D.R. Nelson, Phys. Rev. A 38, 1005 (1988) CrossRefADSGoogle Scholar
  18. J.-M. Park, T.C. Lubensky, Phys. Rev. E 53, 2648 (1996) CrossRefADSMathSciNetGoogle Scholar
  19. P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 85, 5190 (2000) CrossRefADSGoogle Scholar
  20. M.B. Green, J.H. Schwartz, E. Witten, Superstring theory (Cambridge 1988), v. 2 Google Scholar
  21. R. Jackiw, C. Rebbi, Phys. Rev. D 13, 3398 (1976) CrossRefADSMathSciNetGoogle Scholar
  22. A.A. Abrikosov Jr., Int. J. Mod. Phys. A 17, 885 (2002) CrossRefGoogle Scholar
  23. R. Pincak, Phys. Lett. A 340, 267 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical PhysicsDubna, Moscow regionRussia

Personalised recommendations