Advertisement

The spatial structure of networks

Interdisciplinary Physics

Abstract.

We study networks that connect points in geographic space, such as transportation networks and the Internet. We find that there are strong signatures in these networks of topography and use patterns, giving the networks shapes that are quite distinct from one another and from non-geographic networks. We offer an explanation of these differences in terms of the costs and benefits of transportation and communication, and give a simple model based on the Monte Carlo optimization of these costs and benefits that reproduces well the qualitative features of the networks studied.

Keywords

Spectroscopy Neural Network Transportation State Physics Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) CrossRefADSMathSciNetGoogle Scholar
  2. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002) CrossRefADSGoogle Scholar
  3. M.E.J. Newman, SIAM Rev. 45, 167 (2003) CrossRefMATHMathSciNetGoogle Scholar
  4. P. Sen, S. Dasgupta, A. Chatterjee, P.A. Sreeram, G. Mukherjee, S.S. Manna, Phys. Rev. E 67, 036106 (2003) CrossRefADSGoogle Scholar
  5. B.M. Waxman, IEEE J. Selected Areas Comm. 6, 1617 (1988) CrossRefGoogle Scholar
  6. S.H. Yook, H. Jeong, A.-L. Barabási, Proc. Natl. Acad. Sci. USA 99, 13382 (2001) CrossRefADSGoogle Scholar
  7. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) CrossRefADSGoogle Scholar
  8. J. Brimberg, P. Hansen, K.-W. Lih, N. Mladenovic, M. Breton, Oper. Res. 51, 0228 (2003) CrossRefMathSciNetGoogle Scholar
  9. R. Guimerà, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc. Natl. Acad. Sci. USA 102, 7794 (2005) CrossRefADSMathSciNetMATHGoogle Scholar
  10. M.S. Mizruchi, The American Corporate Network, 1904–1974 (Sage, Beverley Hills, 1982) Google Scholar
  11. L.E. Miller, J. Res Natl. Inst. Stand. Technol. 106, 401 (2001) Google Scholar
  12. W.L. Garrison, Papers and Proceedings of the Regional Science Association 6, 121 (1960) Google Scholar
  13. P. Haggett, R.J. Chorley, Network Analysis in Geography (St. Martin's Press, New York, NY, 1969) Google Scholar
  14. K.J. Kansky, Structure of Transportation Networks: Relationships Between Network Geometry and Regional Characteristics (University of Chicago, Chicago, 1963) Google Scholar
  15. S.P. Gorman, R. Kulkarni, Environment and Planning B 31, 273 (2003) Google Scholar
  16. A. Barrat, M. Barthélemy, A. Vespignani, J. Statist. Mech., P05003 (2005) Google Scholar
  17. M. Faloutsos, P. Faloutsos, C. Faloutsos, Comp. Commun. Rev. 29, 251 (1999) CrossRefGoogle Scholar
  18. L.A.N. Amaral, A. Scala, M. Barthélémy, H.E. Stanley, Proc. Natl. Acad. Sci. USA 97, 11149 (2000) CrossRefADSGoogle Scholar
  19. M. Molloy, B. Reed, Random Structures and Algorithms 6, 161 (1995) MATHMathSciNetCrossRefGoogle Scholar
  20. A.-L. Barabási, R. Albert, Science 286, 509 (1999) CrossRefMathSciNetGoogle Scholar
  21. J.M. Kleinberg, Nature 406, 845 (2000) CrossRefADSGoogle Scholar
  22. J. Dall, M. Christensen, Phys. Rev. E 66, 016121 (2002) CrossRefADSMathSciNetGoogle Scholar
  23. S.S. Manna, P. Sen, Phys. Rev. E 66, 066114 (2002) CrossRefADSGoogle Scholar
  24. M. Barthélémy, Europhys. Lett. 63, 915 (2003) CrossRefADSGoogle Scholar
  25. P. Sen, S.S. Manna, Phys. Rev. E 68, 026104 (2003) CrossRefADSGoogle Scholar
  26. T. Petermann, P. de los Rios, preprint cond-mat/0501420 (2005) Google Scholar
  27. M.E.J. Newman, D.J. Watts, Phys. Rev. E 60, 7332 (1999) CrossRefADSGoogle Scholar
  28. D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 1996) Google Scholar
  29. J.E. Hopcroft, R.E. Tarjan, J. ACM 21, 549 (1974) CrossRefMATHMathSciNetGoogle Scholar
  30. G. Csányi, B. Szendrői, Phys. Rev. E 70, 016122 (2004) CrossRefADSGoogle Scholar
  31. A. Fabrikant, E. Koutsoupias, C.H. Papadimitriou, in ICALP (Springer, 2002), Lect. Notes Comput. Sci., Vol. 2380, pp. 110–112 Google Scholar
  32. A.J. Scott, Transportation Research 3, 201 (1969) CrossRefGoogle Scholar
  33. J. Berg, M. Lässig, Phys. Rev. Lett. 89, 228701 (2002) CrossRefADSGoogle Scholar
  34. R. Xulvi-Brunet, I.M. Sokolov, Phys. Rev. E 66, 026118 (2002) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Santa Fe InstituteSanta FeUSA
  2. 2.Department of PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations