Advertisement

Band structure and high pressure study of Rh3Sc, Rh3Y and Rh3La

  • M. Sundareswari
  • M. Rajagopalan
Solid and Condensed State Physics

Abstract.

The electronic structure of the Rhodium based intermetallic compounds (A3B) such as Rh3Sc, Rh3Y and Rh3La are studied by the Self Consistent Tight Binding Linear Muffin Tin Orbital (TB-LMTO) method. In the present work, an attempt has been made to understand why the compounds namely Rh3Y and Rh3La crystallize in hexagonal structure, rather than the cubic structure, where as some of the similar rhodium based A3B compounds namely Rh3Ti, Rh3Zr, Rh3Hf, Rh3V, Rh3Nb, Rh3Ta and Rh3Sc are found to stabilize in cubic structure. In this work a prediction has been made about the structural phase transition in Rh3Y and Rh3La, from Hexagonal phase to Cubic phase. A report of the lattice constant, bulk moduli, cohesive energy and electronic specific heat coefficient is made and is compared with the available experimental data. Band structure and density of states histograms are also plotted. An electronic topological transition is predicted in Rh3La, which may lead to the changes in the Fermi surface topology and hence changes the physical properties of Rh3La.

Keywords

Band Structure Rhodium Fermi Surface Cohesive Energy Structural Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Yamabe-Mitarai, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, H. Harada, Scripta Metall 35, 211 (1996) CrossRefGoogle Scholar
  2. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, H. Harada, Metall Mater Trans. A 29, 537 (1998) Google Scholar
  3. Y. Yamabe-Mitarai, S. Nakazawa, H. Harada, Scripta Metall 43, 1059 (2000) CrossRefGoogle Scholar
  4. Y.F. Gu, Y. Yamabe-Mitarai, Y. Ro, T. Yokokawa, H. Harada, Scripta Metall. 40, 1313 (1999) CrossRefGoogle Scholar
  5. Y. Yamabe-Mitarai, S. Nakazawa, H. Harada, Solid Mech. Mater. Eng. 45, 1 (2002) Google Scholar
  6. Y. Yamabe-Mitarai, Y. Ro., T. Maruko, T. Yokokawa, H. Harada, Structural Intermetallics, TMS, 805 (1997) Google Scholar
  7. Y. Yamabe-Mitarai, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, H. Harada, Scripta Mat. 36, 393 (1997) CrossRefGoogle Scholar
  8. Y. Yamabe-Mitarai, M.H. Hong, Y. Ro, H. Harada, Phill. Mag. Lett. 79, 673 (1999) CrossRefGoogle Scholar
  9. S. Miura, K. Honma, Y. Terada, J.M. Sanchez, T. Mohri, Intermetallics 8, 785 (2000) CrossRefGoogle Scholar
  10. M. Rajagopalan, M. Sundareswari, J. Alloys and Comp. 379, 8 (2004) CrossRefGoogle Scholar
  11. M. Sundareswari, M. Rajagopalan, Int. J. Mod. Phys. B 19, 4587 (2005) (World Scientific Publishing Company) CrossRefADSGoogle Scholar
  12. K. Chen, L.R. Zhao, J.S. Tse, J. Appl. Phys. 93, 2414 (2003) CrossRefADSGoogle Scholar
  13. K. Chen, L.R. Zhao, J.S. Tse, J.R. Rodgers, Phys. Lett. A 331, 400 (2004) CrossRefADSGoogle Scholar
  14. Y. Terada, K. Ohkubo, S. Miura, J.M. Sanchez, T. Mohri, J. Alloys Comp. 354, 202 (2003) CrossRefGoogle Scholar
  15. P. Villars, L.D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Metals Park, OH, 1985) Google Scholar
  16. Singh, Raman, Trans. Met. Soc. AIME 245, 1561 (1969) Google Scholar
  17. O.K. Andersen, O. Jepsen, Phy. Rev. Lett. 53, 2571 (1984) CrossRefADSGoogle Scholar
  18. O.K. Andersen, Z. Pawlowska, O. Jepsen, Phy. Rev. B 34, 5253 (1986) CrossRefADSGoogle Scholar
  19. H.J. Nowak, O.K. Andersen, T. Fujiwara, O. Jepsen, P. Vargas, Phys. Rev. B 44, 3577 (1991) CrossRefADSGoogle Scholar
  20. Sk. Khadeer Pasha, M. Sundareswari, M. Rajagopalan, Physica B 348, 1-4, 206 May (2004) CrossRefADSGoogle Scholar
  21. O.K. Andersen, Phys. Rev. B. 12, 3060 (1975) CrossRefADSGoogle Scholar
  22. H.L. Skriver, The LMTO Method (Springer, Heidelberg, 1984) Google Scholar
  23. U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972) CrossRefADSGoogle Scholar
  24. O. Jepsen, O.K. Andersen, Solid State Communications 9, 1763 (1971) CrossRefGoogle Scholar
  25. N.E. Christensen, D.L. Novikou, R.E. Alonso, C.O. Rodriguez, Phys. Stat. Solidi (b) 211, 5 (1999) CrossRefADSGoogle Scholar
  26. F. Birch, J. Geophys. Rev. 83, 1257 (1978) ADSGoogle Scholar
  27. I.M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960) Google Scholar
  28. M. Rajagopalan, M. Alouani, N.E. Christensen, J. Low Temp. Physics 75, 1 (1989) CrossRefGoogle Scholar
  29. C.W. Chu, T.F. Smith, W.E. Gardner, Phys. Rev. B 1, 214 (1970) CrossRefADSGoogle Scholar
  30. V.I. Makarow, V.G. Barlyakhtar, Sov. Phys. JETP 21, 1151 (1965) Google Scholar
  31. P.Ch. Sahu, N.V. Chandra Shekar, Pramana 54, 685 (2000) Google Scholar
  32. N.V. Chandra Shekar, D.A. Polvani, J.F. Meng, J.V. Badding, Advances in High pressure Science and Technology, edited by A.K. Bandyopadhyay, D. Varandani, K. Lal (National Physics Laboratory, New Delhi, 2001) pp. 310–314 Google Scholar
  33. Charles Kittel, Introduction to Solid state physics, 7th edn. (John Wiley & Sons, Inc. 1996) Google Scholar
  34. D.G. Cierc, H.M. Ledbetter, J. Phys. Chem. Solids 59, 1071 (1998) CrossRefGoogle Scholar
  35. J. Uddin, G.E. Scuscria, Phys. Rev. B 72, 035101 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsSathyabama Deemed UniversityChennaiIndia
  2. 2.Department of PhysicsAnna UniversityChennaiIndia

Personalised recommendations