Hierarchical features of large-scale cortical connectivity

Statistical Physics and Biological Information


The analysis of complex networks has revealed patterns of organization in a variety of natural and artificial systems, including neuronal networks of the brain at multiple scales. In this paper, we describe a novel analysis of the large-scale connectivity between regions of the mammalian cerebral cortex, utilizing a set of hierarchical measurements proposed recently. We examine previously identified functional clusters of brain regions in macaque visual cortex and cat cortex and find significant differences between such clusters in terms of several hierarchical measures, revealing differences in how these clusters are embedded in the overall cortical architecture. For example, the ventral cluster of visual cortex maintains structurally more segregated, less divergent connections than the dorsal cluster, which may point to functionally different roles of their constituent brain regions.


Brain Region Cerebral Cortex Visual Cortex Complex Network Multiple Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. Tononi, G.M. Edelman, O. Sporns, Trends Cogn. Sci. 2, 474 (1998) CrossRefGoogle Scholar
  2. K.J. Friston, Annu. Rev. Neurosci. 25, 221 (2002) CrossRefGoogle Scholar
  3. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 48 (2002) CrossRefADSMathSciNetGoogle Scholar
  4. M.E.J. Newman, SIAM Rev. 45(2), 167 (2003) CrossRefMathSciNetGoogle Scholar
  5. S.N. Dorogovtsev, J.F.F. Mendes, Adv. in Phys. 51, 1079 (2002) CrossRefADSGoogle Scholar
  6. L. da F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas-Boas, e-print arXiv:cond-mat/0505185, May 2005 Google Scholar
  7. G. Buzsaki, C. Geisler, D.A. Henze, X.-J. Wang, Trends Neurosci. 27(4), 183 (2004) CrossRefGoogle Scholar
  8. L. da F. Costa, e-print arXiv:q-bio.MN/0503041, Mar. 2005 Google Scholar
  9. B. Amirikian, PLoS Comp. Biol. 1(1), 74 (2005) Google Scholar
  10. D. Stauffer, A. Aharony, L. da F. Costa, J. Adler, Eur. Phys. J. B 32, 395 (2003) CrossRefADSGoogle Scholar
  11. L. da F. Costa, D. Stauffer, Phys. A 330(1–2), 37 (2003) Google Scholar
  12. C.C. Hilgetag, G.A.P.C. Burns, M.A. O'Neill, J.W. Scannell, M.P. Young, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 91 (2000) CrossRefGoogle Scholar
  13. O. Sporns, G. Tononi, G.M. Edelman, Cereb. Cortex 10, 127 (2000) CrossRefGoogle Scholar
  14. O. Sporns, J.D. Zwi, Neuroinformatics 2(2), 145 (2004) CrossRefGoogle Scholar
  15. O. Sporns, R. Kötter, PLoS Biol. 2(11), 1910 (2004) Google Scholar
  16. L. da F. Costa, Phys. Rev. Lett. 93, 098702 (2004) CrossRefADSGoogle Scholar
  17. L. da F. Costa, e-print arXiv:cond-mat/0408076, Aug. 2004 Google Scholar
  18. L. da F. Costa, e-print arXiv:cond-mat/0412761, Dec. 2004 Google Scholar
  19. L. da F. Costa, e-print arXiv:cond-mat/0501010, Jan. 2005 Google Scholar
  20. M. Faloutsos, P. Faloutsos, C. Faloutsos, ACM SIGCOMM 1999, Boston, USA, Aug./Sep. 1999 Google Scholar
  21. M.E. Newman, e-print arXiv:cond-mat/0111070 (2001) Google Scholar
  22. R. Cohen, S. Havlin, S. Mokryn, D. Dolev, T. Kalisky, Y. Shavitt, e-print arXiv:cond-mat/0305582 (2003) Google Scholar
  23. D.J. Felleman, D.C. Van Essen, Cereb. Cortex 1, 1 (1991) Google Scholar
  24. J.W. Scannell, G.A.P.C. Burns, C.C. Hilgetag, M.A. O'Neill, M.P. Young, Cereb. Cortex 9, 277 (1999) CrossRefGoogle Scholar
  25. C.C. Hilgetag, M. Kaiser, Neuroinformatics 2(3), 353 (2004) CrossRefGoogle Scholar
  26. J.W. Scannell, C. Blakemore, M.P. Young, J. Neurosci. 15, 1463 (1995) Google Scholar
  27. R. Kötter, K.E. Stephan, Neural Netw. 16, 1261 (2003) CrossRefGoogle Scholar
  28. L. da F. Costa, R.M. Cesar Jr., Shape Analysis and Classification (CRC Press, 2001) Google Scholar
  29. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Science 298, 824 (2002) CrossRefADSGoogle Scholar
  30. T.A.B. Snijders, Psychometrika 56, 397 (1991) CrossRefMATHMathSciNetGoogle Scholar
  31. C.C. Hilgetag, M.A. O'Neill, M.P. Young, Phil. Trans. R. Soc. Lond. B 355, 71 (2000) CrossRefGoogle Scholar
  32. R.E. Passingham, K.E. Stephan, R. Kötter, Nat. Rev. Neurosci. 3, 606 Google Scholar
  33. M. T. Schmolesky, Y. Wang. D.P. Hanes, K.G. Thompson, S. Leutgeb, J.D. Schall, A.G. Leventhal, J. Neurophysiol 79, 3272 (1998) Google Scholar
  34. F. Petroni, S. Panzeri, C.C. Hilgetag, R. Kötter, M.P. Young, Neuroreport 12, 2753 (2001) CrossRefGoogle Scholar
  35. R. Kötter, F.T. Sommer, Phil. Trans. R. Soc. Lond. B 355, 127 (2000) CrossRefGoogle Scholar
  36. M.P. Young, Proc. R. Soc. Lond. B. Bio. Sci. 252, 13 (1993) ADSGoogle Scholar
  37. O. Sporns, G. Tononi, R. Kötter, PLoS Comput. Biol. 1, 245 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Instituto de Física de São Carlos, Universidade de São PauloSPBrazil
  2. 2.Department of PsychologyIndiana UniversityBloomingtonUSA

Personalised recommendations