Advertisement

A simple method for the determination of strains in epitaxial films: application to Eu(110) deposited on a Nb(110) buffer

  • S. Soriano
  • T. Gourieux
  • A. Stunault
  • K. Dumesnil
  • C. Dufour
Solid and Condensed State Physics
  • 43 Downloads

Abstract.

In order to determine the strain tensor in a 375 nm thick Eu(110) epitaxial thin film, we have developed a new method, based on the accurate determination of the lattice vectors by high resolution X-ray diffraction. We show that a biaxial strain model gives a good representation of the state of the strains field in the film.

Keywords

Spectroscopy Neural Network Thin Film State Physics High Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Mougin, C. Dufour, K. Dumesnil, Ph. Mangin, Phys. Rev. B 62, 1136 (2000); K. Dumesnil, C. Dufour, Ph. Mangin, G. Marchal, M. Hennion, Europhys. Lett. 31, 43 (1995) Google Scholar
  2. B.M. Clemens, J.A. Bain, MRS Bull. July 1992, pp. 46-51; I.C. Noyan, J.B. Cohen, Residual Stress Measurements by Diffraction and Interpretation (New-York, Springer Verlag, 1987) Google Scholar
  3. S. Soriano, K. Dumesnil, C. Dufour, T. Gourieux, Ph. Mangin, A. Stunault, Phys. Rev. B 71, 092409 (2005) Google Scholar
  4. W.R. Busing, H.A. Levy, Acta Cryst. 22, 457 (1967) Google Scholar
  5. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd edn. (Cambridge University Press, 1992), p. 665 Google Scholar
  6. J. Jo, R.W. Hendricks, J. Appl. Cryst. 24, 878 (1991) Google Scholar
  7. For a recent review, see: A.R. Wildes, J. Mayer, K. Theis-Bröhl, Thin Solid Films 401, 7 (2001) Google Scholar
  8. S. Soriano, K. Dumesnil, C. Dufour, D. Pierre, J. Cryst. Growth 265, 582 (2004) Google Scholar
  9. A.S. Bulatov, O.V. Kovalev, Sov. Phys. Solid State 30, 266 (1988) Google Scholar
  10. N.G. Nereson, C.E. Olsen, G.P. Arnold, Phys. Rev. 135, A176 (1964) Google Scholar
  11. This value of αEu is derived from the data of Bulatov and Kovalev [9] who worked on a single crystal below 300 K. The value \(\alpha_{Eu} =\left({24\pm 4} \right)\times 10^{-6}~{\rm K}^{-1}\) was found by A.M. Burkhanov, N.P. Grazhdankina, I.G. Fakidov, Sov. Phys. Sol. State 9, 586 (1967), by using a differential tensometry method on a polycristalline sample below 300 K. Other values lying around \(33 \times 10^{-6}~{\rm K}^{\mbox{-1}}\) in polycrystalline Eu have been obtained above room temperature: see Beaudry et al., J. Less Com. Met. 34, 225 (1974) and Spedding, Hanak and Daane, J. Less. Com. Met. 1960 Google Scholar
  12. J.B. Wachtman, T.G. Scuderi, G.W. Cleek, J. Am. Ceram. Soc. 45, 319 (1962) Google Scholar
  13. M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, S. Porowski, T.D. Moustakas, J. Appl. Phys. 76, 4909 (1994) Google Scholar
  14. Handbook of Chemistry and Physics, edited by D.R. Lide (CRC Press, 1994), pp. 12–160 Google Scholar
  15. E.J. Grier, M.L. Jenkins, A.K. Petford-Long, R.C.C. Ward, M.R. Wells, Thin Solid Films 358, 94 (2000) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • S. Soriano
    • 1
  • T. Gourieux
    • 1
  • A. Stunault
    • 2
  • K. Dumesnil
    • 1
  • C. Dufour
    • 1
  1. 1.Laboratoire de Physique des Matériaux, UMR CNRS 7556, Université Henri PoincaréVandoeuvre-lès-NancyFrance
  2. 2.Institut Laue-LangevinGrenobleFrance

Personalised recommendations