Numerical and Monte Carlo Bethe ansatz method: 1D Heisenberg model

Solid and Condensed State Physics

Abstract.

In this paper we present two new numerical methods for studying thermodynamic quantities of integrable models. As an example of the effectiveness of these two approaches, results from numerical solutions of all sets of Bethe ansatz equations, for small Heisenberg chains, and Monte Carlo simulations in quasi-momentum space, for a relatively larger chains, are presented. Our results agree with those obtained by the thermodynamic Bethe ansatz (TBA). As an application of these ideas, the pairwise entanglement between two nearest neighbors at finite temperatures is studied.

Keywords

Spectroscopy Neural Network State Physics Complex System Monte Carlo Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Bethe, Z. Physik 71, 205 (1931); H.A. Bethe, reprinted (translation) paper by Daniel C. Mattis in The Many-Body Problem - An Encyclopedia of Exactly Solved Models in One Dimension (World Scientific, Singapore, 1993), p. 689 Google Scholar
  2. C.N. Yang, C.P. Yang, J. Math. Phys. 10, 1115 (1969) Google Scholar
  3. M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge, 1999) Google Scholar
  4. J.M.P. Carmelo, N.M.R. Peres, P.D. Sacramento, Phys. Rev. Lett. 84, 4673 (2000) Google Scholar
  5. E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963) Google Scholar
  6. C.N. Yang, Phys. Rev. Lett. 19, 1312 (1967) Google Scholar
  7. R. Orbach, Phys. Rev. 112, 309 (1958) Google Scholar
  8. E.L. Lieb, F.Y. Wu, Phys. Rev. Lett 20, 1445 (1968) Google Scholar
  9. B. Sutherland, Phys. Rev. Lett. 20, 98 (1968) Google Scholar
  10. N. Motoyama, H. Eisaki, S. Uchida, Phys. Rev. Lett. 76, 3212 (1996) Google Scholar
  11. S. Takagi, H. Deguchi, K. Takeda, M. Mito, M. Takahashi, J. Phys. Soc. Jpn. 65, 1934 (1996) Google Scholar
  12. K.R. Thurber, A.W. Hunt, T. Imai, F.C. Chou, Phys. Rev. Lett. 87, 247202 (2001) Google Scholar
  13. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982) Google Scholar
  14. A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Nucl. Phys. B 241, 333 (1984) Google Scholar
  15. J.L. Cardy, Phase Transition and Critical Phenomena, 11, edited by C. Domb, J.L. Lebowitz (Academic Press, London, 1988) Google Scholar
  16. S. Eggert, I. Affleck, M. Takahashi, Phys. Rev. Lett. 73, 332 (1994) Google Scholar
  17. M. Takahashi, Prog. Theor. Phys. 46, 401 (1971) Google Scholar
  18. M. Gaudin, Phys. Rev. Lett. 26, 1301 (1971) Google Scholar
  19. M. Takahashi, M. Yamada, J. Phys. Soc. Jpn. 54, 2808 (1985) Google Scholar
  20. P. Schlottmann, Phys. Rev. Lett. 54, 2131 (1985) Google Scholar
  21. M. Takahashi, in Physics and Combinatrics, edited by A.K. Kirillov, N. Liskova (World Scientific, Singapore, 2001), pp. 299-304, e-print arXiv:cond-mat/0010486 Google Scholar
  22. M. Shiroishi, M. Takahashi, e-print arXiv:cond-mat/0205180 Google Scholar
  23. M. Suzuki, M. Inoue, Prog. Theor. Phys. 78, 787 (1987) Google Scholar
  24. T. Koma, Prog. Theor. Phys. 78, 1213 (1987); T. Koma, Prog. Theor. Phys. 81, 783 (1989) Google Scholar
  25. A. Klümper, Z. Phys. B 91, 507 (1993) Google Scholar
  26. A. Klümper, Eur. Phys. J. B 5, 677 (1998) Google Scholar
  27. See for example: K.M. O'Connor, W.K. Wootters, Phys. Rev. A 63, 052302 (2001); P. Zanardi, Phys. Rev. A 65, 042101 (2002); X. Wang, P. Zanardi, Phys. Lett. A 301, 1 (2002) Google Scholar
  28. X. Wang, Phys. Rev. A 66, 044305 (2002) Google Scholar
  29. S.J. Gu, H. Li,Y. Q. Li, H.Q. Lin, Phys. Rev. A 70, 052302 (2004) Google Scholar
  30. M.A. Nilesen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000) Google Scholar
  31. See review article by C.H. Bennett, D.P. Divincenzo, Nature 404, 247 (2000) Google Scholar
  32. A. Osterloh, Luigi Amico, G. Falci, Rosario Fazio, Nature 416, 608 (2002) Google Scholar
  33. S.J. Gu, H.Q. Lin, Y.Q. Li, Phys. Rev. A 68, 042330 (2003) Google Scholar
  34. M. Takahashi, Prog. Theor. Phys. 47, 69 (1972) Google Scholar
  35. M.E.J. Newman, G.T. Barkema, Monte Carlo Method in Statistical Physics (Clarendon, Oxford, 1999) Google Scholar
  36. E. Fradkin, Field Theories of Condensed Matter Systems, edited by B. Holland (Addison-Wesley Publishing Company, 1991) Google Scholar
  37. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998); S. Hill, W.K. Wootters Phys. Rev. Lett. 78, 5022 (1997) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics and Institute of Theoretical Physics, The Chinese University of Hong KongHong KongP.R. China
  2. 2.Departamento de Física e Centro de Física da Universidade do MinhoBragaPortugal
  3. 3.Zhejiang Institute of Modern Physics, Zhejiang UniversityHangzhouP.R. China

Personalised recommendations