First-principles study of the optical properties of PbTiO3

Solid and Condensed State Physics


The optical properties of PbTiO3 were studied from first principles using the density functional theory. The dielectric functions and optical constants are calculated using the full potential–linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA). The theoretical calculated optical properties and energy loss (EEL) spectrum yield a static refractive index of 2.83 and a plasmon energy of 23.1 eV for cubic phase. The effective electron number at low energy saturates near 20 eV with the value of 18.1 for the effective electron number. In the tetragonal phase the static refractive index decreases to 2.59 and yields a plasmon energy of 22.7 eV.


Neural Network Refractive Index Optical Property Density Functional Theory Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Blaha, D. Singh, P.I. Sorantin, K. Schwarz, Phys. Rev. B 46, 1321 (1992) CrossRefGoogle Scholar
  2. J.F. Scott, C.A. Paz de Araujo, Science 246, 144 (1986) Google Scholar
  3. R.J. Nelmes, W.F. Kuhs, Solid State Commun. 54, 721 (1985) CrossRefGoogle Scholar
  4. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) CrossRefGoogle Scholar
  5. M. Peterson, F. Wanger, L. Hufnagel, M. Scheffler, P. Blaha, K. Schwarz, Comput. Phys. Commun. 126, 294 (2000) CrossRefGoogle Scholar
  6. P. Blaha, K. Schwarz, WIEN2k, Vienna University of Technology Austria (2002) Google Scholar
  7. F. Wooten, Optical properties of solids (Academic Press, New York, 1972) Google Scholar
  8. S.M. Hosseini, T. Movlarooy, A. Kompany submitted for press Google Scholar
  9. U.V. Waghmare, K.M. Rabe, Phys. Rev. 55, 6161 (1997) CrossRefGoogle Scholar
  10. W. Kleemann, F.J. Schäfer, D. Rytz, Phys. Rev. B 34, 7873 (1986) CrossRefGoogle Scholar
  11. E.R. Leite, L.P.S. Santos, N.L.V. Carreo, E. Longo, C.A. Paskocimas, J.A. Varela, F. Lanciott, C.E.M. Campos, P.S. Pizam, Appl. Phys. Lett. 78, 2148 (2001) CrossRefGoogle Scholar
  12. S. Loughin, R.H. French, L.K. De Noyer, W.-Y Ching, Y.-N Xu J. Phys. D: Appl. Phys. 29, 1740 (1996) Google Scholar
  13. X.T. Chen, H. Yamane, K. Kaya, J. Phys. III France 2, 1439 (1992) CrossRefGoogle Scholar
  14. M.P. Moretm M.A.C. Devillers, K. Worhoff, P.K. Larsen J. Appl. Phys. 92, 468 (2002) Google Scholar
  15. S. Singh, J.P. Remeika, J.R. Potopowicz, Appl. Phys. Lett. 20, 135 (1972) CrossRefGoogle Scholar
  16. K. Bammou, D. Khatib, F. Bensamka, MJCM, 2 (1) art15 (1999) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics(Electroceramic and Material Laboratory), Ferdowsi University of MashhadMashhadIran

Personalised recommendations